Reversible stochastic attribute-value grammars

Daniël de Kok, Barbara Plank, Gertjan van Noord

ACL 2011, Portland, Oregon
Motivation for reversible systems

- State of the art: attribute-value grammar with a maximum entropy model for parse disambiguation or fluency ranking.
- Why do we use separate models for parse disambiguation and fluency ranking?
- Counter-intuitive if we assume that some preferences are shared between parsing and generation.
- Historical accident or necessity?
Consider the two possible readings of the sentence *Jan zag de man* (*Jan saw the man)*:

- \([\text{Jan}]_{su} \text{ zag } [\text{de man}]_{obj}\)
- \([\text{Jan}]_{obj} \text{ zag } [\text{de man}]_{su}\)

Subject fronting is preferred in Dutch, consequently:

- In parse disambiguation we prefer reading of a fronted NP as a subject.
- In fluency ranking we prefer realizations that have a fronted subject NP.
Stochastic AVGs

- Statistical modelling of ‘good’ derivations.
- Due to the use of constraints, relative frequencies as in PCFG are not applicable to AVGs.
- Probability of a derivation using a maximum entropy model (Abney, 1996):

\[
p(d) = \frac{1}{Z} \exp \sum_i \lambda_i f_i(d)
\]

\[
Z = \sum_{d' \in \Omega} \exp \sum_i \lambda_i f_i(d')
\]

(1)

- Reversible, but not practical: normalized over all possible derivations.
When using a conditional model, we can normalize over the yield of parsing or generation (Johnson, 1999):

$$p(d|x) = \frac{1}{Z(x)} \exp \sum_i \lambda_i f_i(x, d)$$

$$Z(x) = \sum_{d' \in \Omega(x)} \exp \sum_i \lambda_i f_i(x, d')$$

Where x is a sentence (parsing) or a logical form (generation).
Directionality

- Such models are not reversible: conditioned on input for one direction.
- Directionality is embodied in the constraint that is applied to each feature:

\[
E_p(f_i) - E_{\tilde{p}}(f_i) = 0 \equiv \\
\sum_{x \in X} \sum_{d \in \Omega(x)} \tilde{p}(x)p(d|x)f_i(x, d) - \tilde{p}(x, d)f_i(x, d) = 0 \quad (3)
\]

- Where \(X \) consists of training instances for **either** parse disambiguation **or** fluency ranking.
- Requires training of two models.
Reversible SAVGs

- Observation: sentences and logical forms are both sets of constraints c that limit the set of all possible derivations.
- If preferences are indeed shared in parsing and generation, one model can be used for both tasks:

$$p(d|c) = \frac{1}{Z(c)} \exp \sum_{i} \lambda_i f_i(c, d)$$

(4)

- How to enforce feature constraints?
Constraints in reversible models

Two constraints per feature, one with respect to parse disambiguation training data S, the other with respect to fluency ranking training data L:

$$\sum_{s \in S} \sum_{d \in \Omega(s)} \tilde{p}(s)p(d|c = s)f_i(s, d) - \tilde{p}(c = s, d)f_i(s, d) = 0$$

$$\sum_{l \in L} \sum_{d \in \Omega(l)} \tilde{p}(l)p(d|c = l)f_i(l, d) - \tilde{p}(c = l, d)f_i(l, d) = 0$$ \hfill (5)

Training leads to one weight per feature.
Does it work?

- Applied to the Alpino parser/generator for Dutch.
- No significant loss of accuracy in parsing and generation compared to directional models.
- When constructing new models, adding data from the other direction improves performance of models significantly.
- Read our paper for a description of our experiments.
What features are discriminative in reversible models, and how does this compare to directional models?

Discriminative features in reversible stochastic attribute-value grammars, Daniël de Kok, Proceedings of the EMNLP 2011 Workshop on Language Generation and Evaluation
Thank you!