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Supervised machine learning for NLP 

Run 
machine 
learning 
algorithm 

Annotate 
text 

Extract 
features 

Automatically 
annotate new 
text 

Choose corpus 
and categories 

Integrate 
into a more 
complex 
task 

Categories for the computer to distinguish 
Draw1: to pull toward 
Draw 2: attract 
Draw 3: create a picture 
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Supervised machine learning for NLP 

Run 
machine 
learning 
algorithm 
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Automatically 
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text 
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Integrate 
into a more 
complex 
task 

When given new text, the 
system looks at those features to 
label instances of draw with 
draw1, draw2, or draw3 
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Supervised machine learning for NLP 

Run 
machine 
learning 
algorithm 

Annotate 
text 

Extract 
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Automatically 
annotate new 
text 
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Integrate 
into a more 
complex 
task 

Use the sense disambiguation 
system to improve information 
retrieval, tutoring systems, etc. 



Features for WSD 

• Lexical 

• Syntactic 

• Semantic 



Lexical 

• Words surrounding the target word  

▫ Choose the window size (2-3 is common) 

• All the words in the sentence (and the sentence 
before and after) 

• POS tag for words in the window 

• 10,000s of features 

• Binary choice for all the words in the corpus 

• Most powerful features 

 

 



Syntactic 

• Parse tree labels of the phrase’s and its siblings’ 
head words 

• For verb sense disambiguation 

▫ Whether a sentence is passive or active 

▫ Whether target has subordinate clause 

▫ Whether target has a PP adjunct 

▫ Parse tree label of the verb’s parent 

 

 



Semantic 

• Named entity type of the word 

• Document topic 

• For verbs: 

▫ Synonyms and hypernyms of the arguments (WN) 

▫ Named entity type of the arguments 

▫ Dynamic dependency neighbors (object classes) 

 



Features for SRL: Parse-free 

• Argument phrase type 
▫ FN Speaker likely to be a noun phrase 
▫ FN Topic likely to be a PP or NP 
▫ FN Medium likely to be a PP 
▫ [We] talked [about the party] [over the phone.] 

• Argument position relative to the target 
predicate 

• Argument order 
▫ First step is to ID arguments of a sentence 
▫ Number the arguments 



SRL features: Using a parse 

• Governing category: Subject or in the VP 

• Path through the parse tree from the target 
predicate to the argument 

• Active or passive voice 

• Head word of the phrase 

▫ Lexical feature that needs a parse 

• Head word of objects of PPs 

▫ On Monday 

▫ On the table 



SRL features: to parse or not 

• Some languages do not have high-accuracy 
automatic parsers 

• Parsing takes a long time 

• Chunking is almost as good (Carreras and Marquez, 

2005) 

▫ NP V NP PP 

• Use both to compensate for parser errors 



How do you get the features? 

• For most realistic assessment of a system, 
should be done automatically 

• The system should be usable on new data 

• For example, for syntactic features, use an 
automatic parser 

• Automatic parsers produce errors 

▫ Lowers a SRL system’s F score by 10 points 

▫ Less impact on WSD 



What type of parse to use 

• Phrase structure parser (Penn Treebank) 

• Combinatorial Categorical Grammar (CCG) 

• Lexical Tree Adjoining Grammar (LTAG) 

• Dependency parses 

• Last 3 more compatible with SRL (Palmer et al., 2010) 



Which classifier to use? 

• SVM is fast 
▫ Good for data with a lot of features 
▫ Good for creating many classifiers (wsd) 

• Try different ones out 
• SRL 
• 2-stage process 

▫ ID and label individual arguments 
▫ Finding the best set of roles for an entire sentence 

 Reranking 
 Viterbi search 

 Integer linear programming 



Evaluation of WSD systems 

• Accuracy 

• Percentage correct, as judged against “gold 
standard” annotation 

• Compared to a lower bound, usually the 
accuracy of a most-frequent-sense method 

▫ Can be quite high for words with one dominant 
sense 

• Compared to an upper bound: inter-annotator 
agreement 



Evaluation of SRL systems 

• System must find the constituents to annotate 
• Precision: Percentage of labels output by the 

system that are correct 
• Recall: Percentage of true labels the system 

identifies 
 True: [Agent He] ate [Patient the peaches] 
 [Instrument with a spoon.] 
 System: [Agent He] ate [Patient the peaches] 
 with a spoon. 
 Precision: 100%; Recall: 66% 



F-score 

• A way to combine precision and recall into one 
score 

• Harmonic mean of precision (P) and recall (R) 

 

𝐹 =  
2𝑃𝑅

𝑃 + 𝑅
 



Feature evaluation 

• Difficult to see which features contributed the 
most to defining the categories, especially when 
using SVM 

• Run the system (train and test) using only one 
feature or one type of feature 

• Add in another feature and run again 
• Compare the results. Did the new feature help? 

▫ Simple comparison: Is one score higher? 
▫ Significance tests: Is one score significantly 

different from the other? 

 



VerbNet classifier 

 

• Treated as a verb sense disambiguation task 

• One classifier per verb 

• Semlink corpus used for training and test data 

• 344 multiclass verbs  

▫ average 2.7 classes 

▫ average of 133 instances 

▫ Includes verbs labeled in the corpus with one 
VerbNet class and “No appropriate class” 
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Features 

• Lexical 
▫ Neighbor words and their POS 

• Syntactic   
▫ Passive/active 
▫ Types of phrases and clauses 
▫ Heads of phrases 

• Semantic 
▫ Synonyms and hypernyms of arguments 
▫ Named entity features 
▫ Dynamic dependency neighbors  
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Overall Results 

 

• Accuracy, using 5-fold cross validation: 88.67% 

• Baseline (most frequent class): 77.78% 

• Error reduction: 49% 



Feature Experiments 

• Developed several different models, each with a 
different combination of features 

• Created a dedicated test set using 30% of the 
Semlink corpus Model 

Lexical features only 

Lexical + syntactic 

Lexical + semantic 

All but DDN 

Lexical + syntactic + 

DDN 

All features 



Feature Results 

 
 
 
 
 
 
 
 
 
 
 

• DDNs added significantly more than the other 
semantic features, resulting in the best-performing 
model 

Model Baseline 

(%) 

Accuracy 

(%) 

Error Reduction 

(%) 

Lexical features only 77.78 83.07 23.81 

Lexical + syntactic 77.78 84.44 29.97 

Lexical + semantic 77.78 83.75 26.87 

All but DDN 77.78 84.12 28.53 

Lexical + syntactic + 

DDN 

77.78 84.89 32.00 

All features 77.78 84.65 30.92 



Tools you can use: WEKA Explorer 

• Open source 
• Implemented in Java 
• Graphical user interface 
• Preprocessing tools 
• Multiple algorithms 

▫ K-nearest neighbor 
▫ Naïve Bayes 
▫ Perceptrons, including SVM 

• Visualization tools 
• Hands-on tutorial next week 
• http://www.cs.waikato.ac.nz/ml/weka/ 



Tools you can use: RapidMiner 

• Open source 
• Implemented in Java 
• Graphical user interface 
• Preprocessing tools 
• Multiple algorithms 

▫ K-nearest neighbor 
▫ Naïve Bayes 
▫ Perceptrons, including SVM 

• Visualization tools 
• http://rapid-i.com/content/view/181/190/ 


