
Machine Learning for Semantics

in NLP

2

Supervised machine learning for NLP

Run
machine
learning
algorithm

Annotate
text

Extract
features

Automatically
annotate new
text

Choose corpus
and categories

Integrate
into a more
complex
task

Categories for the computer to distinguish
Draw1: to pull toward
Draw 2: attract
Draw 3: create a picture

3

Supervised machine learning for NLP

Run
machine
learning
algorithm

Annotate
text

Extract
features

Automatically
annotate new
text

Choose corpus
and categories

Integrate
into a more
complex
task

Label each instance of draw
in the corpus as draw1,
draw2 or draw3

4

Supervised machine learning for NLP

Run
machine
learning
algorithm

Annotate
text

Extract
features

Automatically
annotate new
text

Choose corpus
and categories

Integrate
into a more
complex
task

Tell computer to look at certain
features of the text, e.g., words
surrounding target word

5

Supervised machine learning for NLP

Run
machine
learning
algorithm

Annotate
text

Extract
features

Automatically
annotate new
text

Choose corpus
and categories

Integrate
into a more
complex
task

Computer correlates features
with different senses of draw

6

Supervised machine learning for NLP

Run
machine
learning
algorithm

Annotate
text

Extract
features

Automatically
annotate new
text

Choose corpus
and categories

Integrate
into a more
complex
task

When given new text, the
system looks at those features to
label instances of draw with
draw1, draw2, or draw3

7

Supervised machine learning for NLP

Run
machine
learning
algorithm

Annotate
text

Extract
features

Automatically
annotate new
text

Choose corpus
and categories

Integrate
into a more
complex
task

Use the sense disambiguation
system to improve information
retrieval, tutoring systems, etc.

Features for WSD

• Lexical

• Syntactic

• Semantic

Lexical

• Words surrounding the target word

▫ Choose the window size (2-3 is common)

• All the words in the sentence (and the sentence
before and after)

• POS tag for words in the window

• 10,000s of features

• Binary choice for all the words in the corpus

• Most powerful features

Syntactic

• Parse tree labels of the phrase’s and its siblings’
head words

• For verb sense disambiguation

▫ Whether a sentence is passive or active

▫ Whether target has subordinate clause

▫ Whether target has a PP adjunct

▫ Parse tree label of the verb’s parent

Semantic

• Named entity type of the word

• Document topic

• For verbs:

▫ Synonyms and hypernyms of the arguments (WN)

▫ Named entity type of the arguments

▫ Dynamic dependency neighbors (object classes)

Features for SRL: Parse-free

• Argument phrase type
▫ FN Speaker likely to be a noun phrase
▫ FN Topic likely to be a PP or NP
▫ FN Medium likely to be a PP
▫ [We] talked [about the party] [over the phone.]

• Argument position relative to the target
predicate

• Argument order
▫ First step is to ID arguments of a sentence
▫ Number the arguments

SRL features: Using a parse

• Governing category: Subject or in the VP

• Path through the parse tree from the target
predicate to the argument

• Active or passive voice

• Head word of the phrase

▫ Lexical feature that needs a parse

• Head word of objects of PPs

▫ On Monday

▫ On the table

SRL features: to parse or not

• Some languages do not have high-accuracy
automatic parsers

• Parsing takes a long time

• Chunking is almost as good (Carreras and Marquez,

2005)

▫ NP V NP PP

• Use both to compensate for parser errors

How do you get the features?

• For most realistic assessment of a system,
should be done automatically

• The system should be usable on new data

• For example, for syntactic features, use an
automatic parser

• Automatic parsers produce errors

▫ Lowers a SRL system’s F score by 10 points

▫ Less impact on WSD

What type of parse to use

• Phrase structure parser (Penn Treebank)

• Combinatorial Categorical Grammar (CCG)

• Lexical Tree Adjoining Grammar (LTAG)

• Dependency parses

• Last 3 more compatible with SRL (Palmer et al., 2010)

Which classifier to use?

• SVM is fast
▫ Good for data with a lot of features
▫ Good for creating many classifiers (wsd)

• Try different ones out
• SRL
• 2-stage process

▫ ID and label individual arguments
▫ Finding the best set of roles for an entire sentence

 Reranking
 Viterbi search

 Integer linear programming

Evaluation of WSD systems

• Accuracy

• Percentage correct, as judged against “gold
standard” annotation

• Compared to a lower bound, usually the
accuracy of a most-frequent-sense method

▫ Can be quite high for words with one dominant
sense

• Compared to an upper bound: inter-annotator
agreement

Evaluation of SRL systems

• System must find the constituents to annotate
• Precision: Percentage of labels output by the

system that are correct
• Recall: Percentage of true labels the system

identifies
 True: [Agent He] ate [Patient the peaches]
 [Instrument with a spoon.]
 System: [Agent He] ate [Patient the peaches]
 with a spoon.
 Precision: 100%; Recall: 66%

F-score

• A way to combine precision and recall into one
score

• Harmonic mean of precision (P) and recall (R)

𝐹 =
2𝑃𝑅

𝑃 + 𝑅

Feature evaluation

• Difficult to see which features contributed the
most to defining the categories, especially when
using SVM

• Run the system (train and test) using only one
feature or one type of feature

• Add in another feature and run again
• Compare the results. Did the new feature help?

▫ Simple comparison: Is one score higher?
▫ Significance tests: Is one score significantly

different from the other?

VerbNet classifier

• Treated as a verb sense disambiguation task

• One classifier per verb

• Semlink corpus used for training and test data

• 344 multiclass verbs

▫ average 2.7 classes

▫ average of 133 instances

▫ Includes verbs labeled in the corpus with one
VerbNet class and “No appropriate class”

22

Features

• Lexical
▫ Neighbor words and their POS

• Syntactic
▫ Passive/active
▫ Types of phrases and clauses
▫ Heads of phrases

• Semantic
▫ Synonyms and hypernyms of arguments
▫ Named entity features
▫ Dynamic dependency neighbors

23

Overall Results

• Accuracy, using 5-fold cross validation: 88.67%

• Baseline (most frequent class): 77.78%

• Error reduction: 49%

Feature Experiments

• Developed several different models, each with a
different combination of features

• Created a dedicated test set using 30% of the
Semlink corpus Model

Lexical features only

Lexical + syntactic

Lexical + semantic

All but DDN

Lexical + syntactic +

DDN

All features

Feature Results

• DDNs added significantly more than the other
semantic features, resulting in the best-performing
model

Model Baseline

(%)

Accuracy

(%)

Error Reduction

(%)

Lexical features only 77.78 83.07 23.81

Lexical + syntactic 77.78 84.44 29.97

Lexical + semantic 77.78 83.75 26.87

All but DDN 77.78 84.12 28.53

Lexical + syntactic +

DDN

77.78 84.89 32.00

All features 77.78 84.65 30.92

Tools you can use: WEKA Explorer

• Open source
• Implemented in Java
• Graphical user interface
• Preprocessing tools
• Multiple algorithms

▫ K-nearest neighbor
▫ Naïve Bayes
▫ Perceptrons, including SVM

• Visualization tools
• Hands-on tutorial next week
• http://www.cs.waikato.ac.nz/ml/weka/

Tools you can use: RapidMiner

• Open source
• Implemented in Java
• Graphical user interface
• Preprocessing tools
• Multiple algorithms

▫ K-nearest neighbor
▫ Naïve Bayes
▫ Perceptrons, including SVM

• Visualization tools
• http://rapid-i.com/content/view/181/190/

