Machine Learning for Semantics
in NLP

Supervised machine learning for NLP

Categories for the computer to distinguish
Drawi: to pull toward

Draw 2: attract

Draw 3: create a picture

Supervised machine learning for NLP

Label each instance of draw
in the corpus as drawi,
draw2 or draw3

Supervised machine learning for NLP

Tell computer to look at certain
features of the text, e.g., words
surrounding target word

Supervised machine learning for NLP

Computer correlates features

‘ with different senses of draw

: _
= -

Supervised machine learning for NLP

When given new text, the
system looks at those features to
label instances of draw with
draw1, draw2, or draw3

Supervised machine learning for NLP

Use the sense disambiguation
system to improve information
retrieval, tutoring systems, etc.

Features for WSD

» Lexical
 Syntactic
« Semantic

Lexical

- Words surrounding the target word
= Choose the window size (2-3 is common)

« All the words in the sentence (and the sentence
before and after)

- POS tag for words in the window

* 10,000s of features

- Binary choice for all the words in the corpus
» Most powerful features

Syntactic

- Parse tree labels of the phrase’s and its siblings’
head words
- For verb sense disambiguation
= Whether a sentence is passive or active
= Whether target has subordinate clause
= Whether target has a PP adjunct
= Parse tree label of the verb’s parent

Semantic

- Named entity type of the word

« Document topic

- For verbs:
= Synonyms and hypernyms of the arguments (WN)
= Named entity type of the arguments
= Dynamic dependency neighbors (object classes)

Features for SRL: Parse-free

- Argument phrase type
= FN Speaker likely to be a noun phrase
s FN Topic likely to be a PP or NP
» FN Medium likely to be a PP
= [We] talked [about the party] [over the phone.]
- Argument position relative to the target
predicate
» Argument order
= First step is to ID arguments of a sentence
s Number the arguments

SRL features: Using a parse

- Governing category: Subject or in the VP
- Path through the parse tree from the target
predicate to the argument
» Active or passive voice
- Head word of the phrase
» Lexical feature that needs a parse
- Head word of objects of PPs
s On Monday
= On the table

SRL features: to parse or not

- Some languages do not have high-accuracy
automatic parsers

- Parsing takes a long time

« Chunking is almost as good (Carreras and Marquez,
2005)

= NPV NP PP
- Use both to compensate for parser errors

How do you get the features?

- For most realistic assessment of a system,
should be done automatically

 The system should be usable on new data

- For example, for syntactic features, use an
automatic parser

- Automatic parsers produce errors
= Lowers a SRL system’s F score by 10 points
= Less impact on WSD

What type of parse to use

- Phrase structure parser (Penn Treebank)

- Combinatorial Categorical Grammar (CCG)

- Lexical Tree Adjoining Grammar (LTAG)

- Dependency parses

 Last 3 more compatible with SRL (Palmer et al., 2010)

Which classifier to use?

» SVM is fast
= Good for data with a lot of features
= Good for creating many classifiers (wsd)
- Try different ones out
 SRL
* 2-stage process
= ID and label individual arguments
= Finding the best set of roles for an entire sentence
- Reranking

- Viterbi search
- Integer linear programming

Evaluation of WSD systems

» Accuracy

- Percentage correct, as judged against “gold
standard” annotation

- Compared to a lower bound, usually the
accuracy of a most-frequent-sense method
= Can be quite high for words with one dominant

sense

- Compared to an upper bound: inter-annotator

agreement

Evaluation of SRL systems

- System must find the constituents to annotate
- Precision: Percentage of labels output by the
system that are correct
- Recall: Percentage of true labels the system
identifies
True: [Agent He] ate [Patient the peaches]
[Instrument with a spoon.]
System: [Agent He] ate [Patient the peaches]
with a spoon.
Precision: 100%; Recall: 66%

F-score

- A way to combine precision and recall into one
score

- Harmonic mean of precision (P) and recall (R)

2PR
P+R

Feature evaluation

- Difficult to see which features contributed the
most to defining the categories, especially when
using SVM

» Run the system (train and test) using only one
feature or one type of feature

- Add in another feature and run again

- Compare the results. Did the new feature help?
= Simple comparison: Is one score higher?

= Significance tests: Is one score significantly
different from the other?

I,

VerbNet classifier

- Treated as a verb sense disambiguation task
 One classifier per verb
« Semlink corpus used for training and test data
» 344 multiclass verbs

= average 2.7 classes

= average of 133 instances

» Includes verbs labeled in the corpus with one
VerbNet class and “No appropriate class”

.

Features

- Lexical
s Neighbor words and their POS
 Syntactic
= Passive/active
= Types of phrases and clauses
» Heads of phrases
« Semantic
= Synonyms and hypernyms of arguments
» Named entity features
= Dynamic dependency neighbors

Overall Results

 Accuracy, using 5-fold cross validation: 88.67%
- Baseline (most frequent class): 77.78%
 Error reduction: 49%

Feature Experiments

- Developed several different models, each with a
different combination of features

- Created a dedicated test set using 30% of the
Semlink corpus Model

Lexical features only

Lexical + syntactic
Lexical + semantic
All but DDN

Lexical + syntactic +
DDN
All features

Feature Results

Model Baseline |Accuracy |Error Reduction
(%0) (%) (%)
Lexical features only |77.78 83.07 23.81
Lexical + syntactic [7.78 84.44 29.97
<4:emmmtic 77.78 83.75 26.87
but DDN 77.78 84.12 28.53
Lexical + syntactic +|/7.78 34.89 32.00
DDN
All features 77.78 84.65 30.92

- DDNs added significantly more than the other
senzlarlltic features, resulting in the best-performing
mode

Tools you can use: WEKA Explorer

« Open source
- Implemented in Java
- Graphical user interface
- Preprocessing tools
» Multiple algorithms
= K-nearest neighbor
= Nalve Bayes
= Perceptrons, including SVM
- Visualization tools
- Hands-on tutorial next week
- http://www.cs.waikato.ac.nz/ml/weka/

Tools you can use: RapidMiner

« Open source
- Implemented in Java
- Graphical user interface
 Preprocessing tools
« Multiple algorithms
» K-nearest neighbor
= Nalve Bayes
= Perceptrons, including SVM
- Visualization tools
» http://rapid-i.com/content/view/181/190/

