Evaluating Annotation Reliability

Outline

- Why we care
- ITA
 - How it is calculated
 - Confusion matrices
 - What about chance agreement?
- Agreement coefficients
 - How they work in general
 - Types of chance agreement
 - Types of coefficients
 - Problems for semantic annotation

Concerns about manual annotation

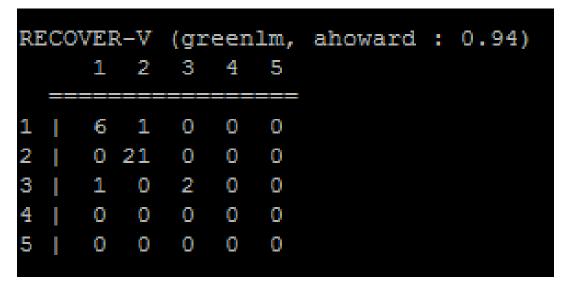
- Are the annotators doing a good job?
 - Do they understand guidelines?
 - Are they paying attention and/or capable of doing the job?
- Are the chosen categories good ones?
 - Are they missing a category?
 - Is it hard to tell the difference between the categories?
 - Are they totally inappropriate categories?

InterTagger Agreement (ITA)

- Simplest method
- Percentage of time annotators agree on the labels they have given the instances
- If you have 2 annotators and 10 tokens, and the annotations for 8 tokens match, ITA = .80, or 80%

Low ITA means

- The guidelines were unclear, or
- The annotators were watching TV while working
- There was a category missing, or
- Some of the categories are indistinguishable in the data, or
- The categories are entirely wrong for the data
- Something is wrong

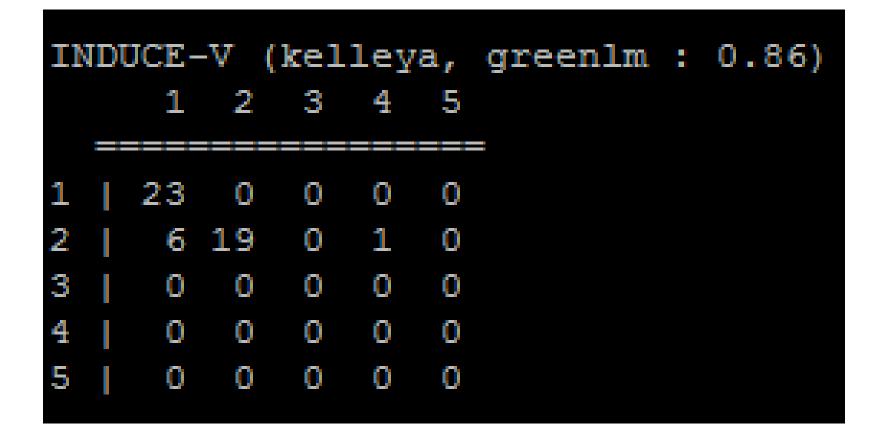


High ITA means

- Your data is consistent.
- Your data could be consistently wrong.
- Example: label all open class words, using labels "noun" and "verb"
- Both annotators decided to annotate adjectives with "noun"

Confusion matrices

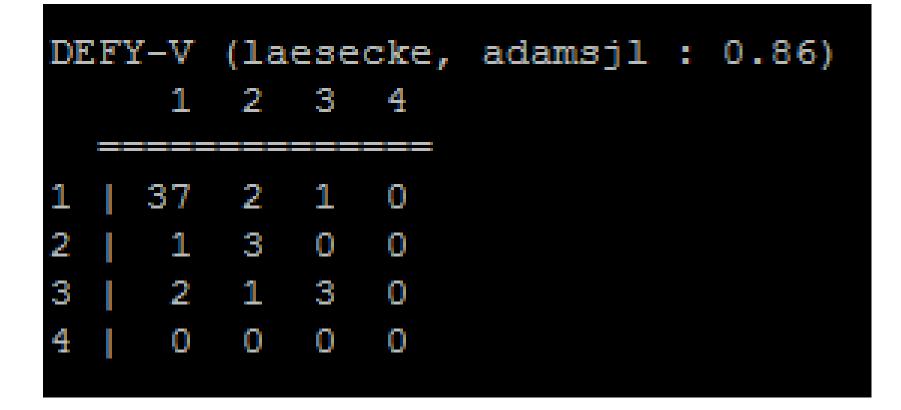
- See whether there is any pattern to the disagreements
- Tell you where guidelines are obscure or categories are bad, at least bad for your data


No pattern

co	M	IANI)-V	(gr	een	lm,	laesecke	0.76)
		1	2	3	4	5		
1		11	2	2	2	0		
2		1	11	1	0	0		
3		1	0	10	1	0		
4		0	0	0	0	0		
5		0	0	0	0	0		

pattern

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FORGE-V (kelleya, crooksk : 0										0.36)
2 0 8 0 0 0 0 0 3 0 0 4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0			1	2	3	4	5	6	7	8	
2 1 0 8 0 0 0 0 0 0 3 1 0 0 4 0 0 0 0 0 4 1 0 0 0 4 0 0 0 0 5 1 0 0 0 0 0 0 0 6 1 0 0 3 0 0 0 0 0 7 1 0 0 0 0 0 0 0 0	1		1	0	0	0	0	0	0	0	_
4 0 0 0 4 0 0 0 0 5 0 0 0 0 0 0 0 0 6 0 0 32 0 0 1 0 0 7 0 0 0 0 0 0 0 0	2		0	8	0	0	0	0	0	0	
5 0 0 0 0 0 0 0 0 6 0 0 32 0 0 1 0 0 7 0 0 0 0 0 0 0 0	3		0	0	4	0	0	0	0	0	
6 0 0 32 0 0 1 0 0 7 0 0 0 0 0 0 0 0	4		0	0	0	4	0	0	0	0	
7 0 0 0 0 0 0 0	5		0	0	0	0	0	0	0	0	
	6		0	0	32	0	0	1	0	0	
8 0 0 0 0 0 0 0 8	7		0	0	0	0	0	0	0	0	
•	8		0	0	0	0	0	0	0	0	


pattern

What do you see?

SE.	AT-		(gr 2				ms km	:	0.41))
-		 	~							
			0			10				
		0	2	0	0	0				
3		0	0	2	0	0				
4		0	0	0	0	0				
5		0	0	0	0	0				

What do you see?

Εž	(PI	LOIT	r–v	(cr	ooksk,	browneal	0.59)
		1	2	3	4		
1		27	14	6	0		
2		0	2	0	0		
3		0	0	0	0		
4		0	0	0	0		

If there is a pattern

- Say, category 1 and category 3 are confused with each other, then the problem lies with those categories, not the task as a whole
- If there is no pattern, look for a more general problem

What level of ITA is low?

- Must consider chance agreement
- If there are 2 annotators and 2 labels, we would expect them to agree at least 50%. Should be at least higher than that
- 2 annotators, 4 labels, chance agreement = 25% then 45% would be not bad.
- That assumes an even distribution of categories in the real world
 - Word sense (bank-financial vs. bank-river)
 - Semantic role labels (agent vs. instrument)

Coefficients

- Take chance agreement into account
- Differ in how they calculate the probability that a given coder will assign an item to a given category
- Basic types
 - **S**
 - П
 - K

What does the result mean?

CompleteChancePerfectdisagreementagreementagreement

Always expect some agreement by chance. Coefficients will always be lower than the corresponding ITA, unless there is perfect agreement (1).

Basic formula

- C coder k category
- Ao observed agreement
- Ae expected agreement (agreement from chance)
- 1-Ae agreement above chance that is possible
- Ao Ae observed agreement above chance

$$S, \pi, \kappa = \frac{A_o - A_e}{1 - A_e}$$

• The difference lies in how they calculate Ae

S

- Assumes a uniform distribution across categories and coders
- All classes are equally likely
- 4 word senses, 25% chance of picking a particular sense

$$\mathbf{A}_{\mathbf{e}}^{S} = \sum_{k \in K} \frac{1}{\mathbf{k}} \cdot \frac{1}{\mathbf{k}} = \mathbf{k} \cdot \left(\frac{1}{\mathbf{k}}\right)^{2} = \frac{1}{\mathbf{k}}$$

Π

- Want to account for the "real" distribution of the categories in our data (some categories are much more likely)
- Uses the distribution of labels produced by the coders
- Same probability for each category across coders
- n_k number of items labeled with k by both coders
- i number of items

$$\mathbf{A}_{\mathbf{e}}^{\pi} = \sum_{k \in K} \hat{\mathbf{P}}(k) \cdot \hat{\mathbf{P}}(k) = \sum_{k \in K} \left(\frac{\mathbf{n}_k}{2\mathbf{i}}\right)^2 = \frac{1}{4\mathbf{i}^2} \sum_{k \in K} \mathbf{n}_k^2$$

• $\pi \leq S$; pi is almost always less than S

K

- Takes into account annotator bias
- Annotators may have different tendencies to use one category more than another
- Especially for semantic judgments

$$A_{e}^{\kappa} = \sum_{k \in K} \hat{P}(k|c_{1}) \cdot \hat{P}(k|c_{2}) = \sum_{k \in K} \frac{n_{c_{1}k}}{i} \cdot \frac{n_{c_{2}k}}{i} = \frac{1}{i^{2}} \sum_{k \in K} n_{c_{1}k} n_{c_{2}k}$$

• Most commonly used coefficient in NLP

Other options

- When there are more than 2 annotators
 - Fleiss's multi-π
 - Multi-κ
- When some disagreements are more important than others
 - Weighted agreement coefficients
 - Krippendorff's α

Just tell us which one to use

- No one uses S
- π and κ give very similar results
- A κ scores higher when there is a lot of variability in distribution between coders
- If testing with a small data set before single annotating the rest
 - Don't discount the variability
 - So use π
- If there are multiple annotators or weighted disagreements, see previous slide

Just tell us what a good score is

- $.67 \le \kappa < .80$ for tentative reliability
- $\kappa \ge .80$ good reliability (Krippendorff, 1980)
- No, no, $\kappa \ge .80$ is a minimum (Krippendorff, 2004)
- Not testing to be sure annotators are better than chance, but to be sure they are not too far from perfect agreement
- Depends on task: Prevalence problem

Prevalence problem

- When 1 category is much more prevalent than another, almost impossible to get a high κ
- Rare categories then have great influence
- Average kappa across 40 verbs for word sense annotation .69
- Boost ITA .96

к -.18

Each annotator chose boost.02 once, but they disagreed on which one was boost.02

- Byrt, Bishop and Carlin (1993): $2A_a 1$
- Report ITA also

Resources

- If 8 or fewer categories: <u>http://faculty.vassar.edu/lowry/kappa.html</u>
- More categories and multiple annotators: <u>http://cosmion.net/jeroen/software/kappao/</u>
- Downloadable VBA program: <u>http://agreestat.com/agreestat</u>