Semantic and Multimodal Annotation

CLARA

University of Copenhagen 15-26 August 2011 Susan Windisch Brown

Program: Monday

- Big picture
- Coffee break
- Lexical ambiguity and word sense annotation
- Lunch break
- Introduction to the annotation tool Stamp
- Coffee break
- Hands-on annotation

Semantic annotation

The big picture

Outline

- 1. Semantics: Definition and significance for NLP
- 2. Annotation: Its role in NLP
- **3**. Design and implementation of annotation projects

Outline

- 1. Semantics: Definition and significance for NLP
- 2. Annotation: Its role in NLP
- 3. Design and implementation of annotation projects

What do we want computers to be able to do with human languages?

- Machine translation
- Text summarization (medical, business, military)
- Question-answering systems
- Tutoring systems

What we have now

- Search key terms
- Domain-specific interaction with computers (airline reservations, prescription ordering)
- Some question answering
 - Wolfram Alpha
 - IBM's Watson
- Rudimentary translation

Next step

- Need to move beyond surface level of text
 - Words in isolation
 - Part of speech
 - Syntax
- To deeper meaning of sentences, paragraphs, entire texts
- Need semantics

Example: Identifying relevant information

- Query
 - List crimes of John Lee

Possible Answers

- Lee smuggled heroin across the border
- Lee participated in a bank robbery
- The arson was committed by Lee
- Lee blew up a bus
- Lee stole second base
- Lee stole a kiss from Mary
- A drug dealer shot Lee
- Lee blew up

Example: Identifying relevant information

- Query
 - List crimes of John Lee
- Possible Answers
 - Lee smuggled heroin across the border
 - Lee participated in a bank robbery
 - The arson was committed by Lee
 - Lee blew up a bus
 - Lee stole second base
 - Lee stole a kiss from Mary
 - A drug dealer shot Lee
 - Lee blew up

Senses for steal

- Sense 1: take possession without consent or right Someone stole my wallet on the train.
- Sense 2: do or achieve something surreptitiously or stealthily
 I leaned close and stole a kiss.
 She stole a glance at her watch.

 Sense 3: draw attention or have successful performance

He stole the show with his offbeat puns and no-fear analogies.

• Sense 4: BASEBALL-gain base without hit He might be the last person in baseball you'd expect to steal a base.

Example: Identifying relevant information

- Query
 - List crimes of John Lee
- Possible Answers
 - Lee smuggled heroin across the border
 - Lee participated in a bank robbery
 - The arson was committed by Lee
 - Lee blew up a bus
 - Lee stole second base
 - Lee stole a kiss from Mary
 - A drug dealer shot Lee
 - Lee blew up

Who actually did these things?

Example: Identifying relevant information

- Query
 - List crimes of John Lee
- Possible Answers
 - Lee smuggled heroin across the border
 - Lee participated in a bank robbery
 - The arson was committed by Lee
 - Lee blew up a bus
 - Lee stole second base
 - Lee stole a kiss from Mary
 - A drug dealer shot Lee
 - Lee blew up

criminal?

Semantic roles

• Syntax only gets you so far in answering "Who did what to whom?"

Lee blew up the bus.

Syntax:

NP_{SUB} V NP_{OBJ}

The bus blew up.

NP_{SUB} Syntax: V

Semantic roles

• Syntax only gets you so far in answering "Who did what to whom?"

Lee blew u	ıp the bus.
------------	-------------

Syntax:	NP _{SUB} V NP _{OBJ}
Semantics:	Exploder REL thing exploded
	The bus blew up.
Syntax:	NP _{SUB} V
Semantics:	thing exploded REL

Example: Identifying relevant information

- Query
 - List crimes of John Lee

Possible Answers

- Lee smuggled heroin across the border
- Lee participated in a bank robbery
 - The arson was committed by Lee
- Lee stole second base
- Lee stole a kiss from Mary
- A drug dealer shot Lee
- Eee blew up.

Different aspects of semantics

- Word sense
- Thematic (semantic) roles
- Event structure
- Discourse structure
- Sentiment analysis

Event and temporal structure

- "Carlos Rivera, president of the drama club, said last week that all the after-school clubs would host a fundraiser because the school lost its funding for the arts."
- Temporal aspects of entities
- Anchoring events in time
- Ordering events with respect to one another
- Aspectual and modal predication
- Time ML (Pustejovsky et al., 2003)

Discourse structure

- Rhetorical relations between clauses and sentences
 - Lexically signalled (e.g., but, because, as a result)
 - Inferred from proximity (I needed a lot of money for books. My dad offered to lend me \$100.)
- RST Corpus (Carlson, Marcu & Okurowski, 2001)
- The Discourse GraphBank (Wolf & Gibson, 2005)
- Penn Discourse TreeBank (Prasad et al., 2008)

Sentiment analysis

- Attitude of speaker/write toward a topic
- Sentiment polarity of document, sentence, feature
- JDPA Sentiment Corpus (Kessler et al., 2010)
 - Negators
 - Neutralizers
 - Committees
 - Intensifiers
 - Entities are annotated for expressed attitude

Semantics in text

- Deeper meaning than
 - A bag of words
 - syntax
- Means of discovering is growing
 - Word sense
 - Semantic roles
 - Event analysis
 - Discourse analysis
 - Sentiment analysis . . .

Outline

- 1. Semantics: Definition and significance for NLP
- 2. Annotation: Its role in NLP
- **3**. Design and implementation of annotation projects

Why annotation?

- Real-world data for linguistics research (corpus linguistics)
- Training data for supervised machine learning

Outline

- 1. Semantics: Definition and significance for NLP
- 2. Annotation: Its role in NLP
- 3. Design and implementation of annotation projects

Corpus choice Categories/classes choice Task design Annotation reliability Annotation efficiency

Outline

- 1. Semantics: Definition and significance for NLP
- 2. Annotation: Its role in NLP
- 3. Design and implementation of annotation projects

Corpus choice

Categories/classes choice Task design Annotation reliability Annotation efficiency

The more data the better

- To see patterns, ML algorithm needs many instances of those patterns
- Need examples of all the categories in order to learn how to distinguish them
 - Skewed data
 - Rare categories

• Active learning can reduce the amount needed

The more varied the data, the better

- Must have examples in order to generalize
 - Of categories
 - Of contexts
- Different genres
 - Fiction, non-fiction
 - Conversation, blogs, broadcast news
- Different domains
 - Financial
 - Current events
 - Medical

Desired features can influence corpus choice

- Is the corpus tagged with parts of speech?
- How it can help
 - The sail tore./We will sail at dawn.

noun verb

• She left at 8:00.

prep noun

 She left her diamonds to her daughter. det noun

Syntactic structure

- Transitive vs. intransitive
 - She left at 8:00.
 - She left her diamonds to her daughter.
- Is there a PP in the sentence?
 - The paint ran.
 - The boy ran to the store.
- If so, which preposition?
 - The paint ran down her face.
 - The boy ran around the park.

Corpus choice

- Part of speech tagged?
- Syntactically parsed?
- Varied (balanced)?
 - Different domains of non-fiction
 - Fiction
 - Transcribed speech

Outline

- 1. Semantics: Definition and significance for NLP
- 2. Annotation: Its role in NLP
- 3. Design and implementation of annotation projects

Corpus choice

Categories/classes choice

- Task design
- Annotation reliability
- Annotation efficiency

Category generality

• How broad or narrow will the labels be?

38

- Word sense
 - WordNet: 36 senses for the verb draw
 - OntoNotes: 11 senses for the verb draw
 - PropBank: 3 senses for the verb draw
- Semantic roles
 - Scott ate with a fork.
 - agent instrument
 - eater utensil

Other considerations

Theoretical

- Demonstrate a particular theory
- Follow an established model
- Practical
 - Can annotators distinguish between the labels?
 - How much time does it take to annotate with the labels?

Outline

- 1. Semantics: Definition and significance for NLP
- 2. Annotation: Its role in NLP
- 3. Design and implementation of annotation projects

Corpus choice Categories/classes choice Task design Annotation reliability Annotation efficiency

Organization of annotation tasks

- Goals
 - Speed
 - Consistency
- Limit choices
- Limit switching between sets of choices

Divide into tasks based on specific words

- All and only instances of *draw* in the same task
- Annotator becomes familiar with the choices
- And familiar with the contexts
- Excellent for word sense and semantic role labeling
- Not feasible for certain types of annotation
 - Event course annotation
 - Discourse annotation
 - Ontology annotation with many rare terms

Divide into categories (two-stage annotation)

- Annotate for broad categories first
- Collect all instances of one broad category into a task
- Then annotate with finer grained categories
- Ontology annotation, such as medical ontologies

Outline

- 1. Semantics: Definition and significance for NLP
- 2. Annotation: Its role in NLP
- 3. Design and implementation of annotation projects

Corpus choice Categories/classes choice Task design Annotation reliability Annotation efficiency

Ensuring reliable annotation

- Machine learning requires clear patterns to work
- Consistent training, with written guidelines
- Multiple annotators tagging the same material
 Less idiosyncratic
 - Can calculate the level of agreement between annotators
 - Indicates how reliable the annotators and/or the annotation scheme is
- Adjudication

Types of multiple annotation

- Concensus annotation
 - Reliable but slow
- Independent multiple annotation
 - Double annotation is common
 - Crowd annotation is growing
- If independent, need an adjudication method
 - Specially trained adjudicator
 - Algorithm using most common choice, annotator statistics, etc.

Outline

- 1. Semantics: Definition and significance for NLP
- 2. Annotation: Its role in NLP
- 3. Design and implementation of annotation projects

Corpus choice Categories/classes choice Task design Annotation reliability Annotation efficiency

Improving annotation efficiency

- Making annotation faster and cheaper
- Crowdsourcing
- Active learning
- Other semi-supervised annotation methods

Crowdsourcing: Games with a Purpose

- Web-based games
- Free labor
- High up-front costs
- Only feasible for very large projects and simple tasks
- NLP and semantic annotation examples
 - Phrase Detectives (coreference annotation; http://anawiki.essex.ac.uk/phrasedetectives/index.php)
 - ESP Game (image recognition; http://www.gwap.com/gwap/gamesPreview/espgame/)

Crowdsourcing: Wisdom of the Crowd

• Use volunteers

- Altruism and/or interest in using the resulting resource
- Difficult to find and maintain a corps of volunteers; best success with:
 - Open-source resources
 - Domain-specific resources
- Feasible for non-time-sensitive projects
- Language-related examples
 - Oxford English Dictionary
 - Open Mind Initiative (word relations, word sense)

Crowdsourcing: Mechanical Turk

- Clearinghouse for web-based labor
- Pros
 - Very low cost
 - Large pool of laborers
 - Infrastructure for task creation and management
 - Screen annotators
- Cons
 - Laborers have little expertise
 - Money incentive promotes cheating
- Semantic annotation examples
 - Word similarity
 - Event ordering
 - Word sense annotation

Improving annotation efficiency: Active learning

- Find most informative examples to manually annotate
- Manually annotate a small "seed" set of instances
- Train a classifier on them
- Have the classifier choose next instances to annotate
- Dramatically reduces the amount of annotation

Active learning: missed cluster effect

- Skewed data can be a problem
 - E.g., word senses
- Hand select seed set (Tomanek et al. 2009)
- Automatic method using language modeling (Dligach and Palmer, 2011)

Improving annotation efficiency: Other types of semi-automatic annotation

- Building off existing resources
- Semlink
 - Used a corpus annotated with PropBank thematic roles
 - Created a mapping from PB roles and rolesets to VerbNet roles and classes
 - Applied to corpus
 - Hand corrected