
Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 145–153,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

Automatic training of lemmatization rules that handle morphological 
changes in pre-, in- and suffixes alike 

 
 

Bart Jongejan 
CST-University of Copenhagen 

Njalsgade 140-142 2300 København S 
Denmark 

bartj@hum.ku.dk 

Hercules Dalianis† ‡ 
†DSV, KTH - Stockholm University  
Forum 100, 164 40 Kista, Sweden  

‡Euroling AB, SiteSeeker 
Igeldammsgatan 22c  

112 49 Stockholm, Sweden  
hercules@dsv.su.se 

 
  

 

Abstract 

We propose a method to automatically train 
lemmatization rules that handle prefix, infix 
and suffix changes to generate the lemma from 
the full form of a word. We explain how the 
lemmatization rules are created and how the 
lemmatizer works. We trained this lemmatizer 
on Danish, Dutch, English, German, Greek, 
Icelandic, Norwegian, Polish, Slovene and 
Swedish full form-lemma pairs respectively. 
We obtained significant improvements of 24 
percent for Polish, 2.3 percent for Dutch, 1.5 
percent for English, 1.2 percent for German 
and 1.0 percent for Swedish compared to plain 
suffix lemmatization using a suffix-only lem-
matizer. Icelandic deteriorated with 1.9 per-
cent. We also made an observation regarding 
the number of produced lemmatization rules as 
a function of the number of training pairs. 

1 Introduction 

Lemmatizers and stemmers are valuable human 
language technology tools to improve precision 
and recall in an information retrieval setting. For 
example, stemming and lemmatization make it 
possible to match a query in one morphological 
form with a word in a document in another mor-
phological form. Lemmatizers can also be used 
in lexicography to find new words in text mate-
rial, including the words’ frequency of use. Other 
applications are creation of index lists for book 
indexes as well as key word lists 

Lemmatization is the process of reducing a 
word to its base form, normally the dictionary 
look-up form (lemma) of the word. A trivial way 
to do this is by dictionary look-up.  More ad-
vanced systems use hand crafted or automatically 

generated transformation rules that look at the 
surface form of the word and attempt to produce 
the correct base form by replacing all or parts of 
the word. 

Stemming conflates a word to its stem. A stem 
does not have to be the lemma of the word, but 
can be any trait that is shared between a group of 
words, so that even the group membership itself 
can be regarded as the group’s stem.  

The most famous stemmer is the Porter Stem-
mer for English (Porter 1980). This stemmer re-
moves around 60 different suffixes, using rewrit-
ing rules in two steps. 

The paper is structured as follows: section 2 
discusses related work, section 3 explains what 
the new algorithm is supposed to do, section 4 
describes some details of the new algorithm, sec-
tion 5 evaluates the results, conclusions are 
drawn in section 6, and finally in section 7 we 
mention plans for further tests and improve-
ments. 

2 Related work  

There have been some attempts in creating 
stemmers or lemmatizers automatically. Ek-
mekçioglu et al. (1996) have used N-gram 
matching for Turkish that gave slightly better 
results than regular rule based stemming. Theron 
and Cloete (1997) learned two-level rules for 
English, Xhosa and Afrikaans, but only single 
character insertions, replacements and additions 
were allowed. Oard et al. (2001) used a language 
independent stemming technique in a dictionary 
based cross language information retrieval ex-
periment for German, French and Italian where 
English was the search language. A four stage 
backoff strategy for improving recall was intro-
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duced. The system worked fine for French but 
not so well for Italian and German. Majumder et 
al. (2007) describe a statistical stemmer, YASS 
(Yet Another Suffix Stripper), mainly for Ben-
gali and French, but they propose it also for 
Hindi and Gujarati. The method finds clusters of 
similar words in a corpus. The clusters are called 
stems. The method works best for languages that 
are basically suffix based. For Bengali precision 
was 39.3 percent better than without stemming, 
though no absolute numbers were reported for 
precision. The system was trained on a corpus 
containing 301 562 words.  

Kanis & Müller (2005) used an automatic 
technique called OOV Words Lemmatization to 
train their lemmatizer on Czech, Finnish and 
English data. Their algorithm uses two pattern 
tables to handle suffixes as well as prefixes. Plis-
son et al. (2004) presented results for a system 
using Ripple Down Rules (RDR) to generate 
lemmatization rules for Slovene, achieving up to 
77 percent accuracy. Matjaž et al. (2007) present 
an RDR system producing efficient suffix based 
lemmatizers for 14 languages, three of which 
(English, German and Slovene) our algorithm 
also has been tested with. 

Stempel (Białecki 2004) is a stemmer for Pol-
ish that is trained on Polish full form – lemma 
pairs. When tested with inflected out-of-
vocabulary (OOV) words Stempel produces 95.4 
percent correct stems, of which about 81 percent  
also happen to be correct lemmas.  

Hedlund (2001) used two different approaches 
to automatically find stemming rules from a cor-
pus, for both Swedish and English. Unfortunately 
neither of these approaches did beat the hand 
crafted rules in the Porter stemmer for English 
(Porter 1980) or the Euroling SiteSeeker stem-
mer for Swedish, (Carlberger et al. 2001).  

Jongejan & Haltrup (2005) constructed a 
trainable lemmatizer for the lexicographical task 
of finding lemmas outside the existing diction-
ary, bootstrapping from a training set of full form 
– lemma pairs extracted from the existing dic-
tionary. This lemmatizer looks only at the suffix 
part of the word. Its performance was compared 
with a stemmer using hand crafted stemming 
rules, the Euroling SiteSeeker stemmer for 
Swedish, Danish and Norwegian, and also with a 
stemmer for Greek, (Dalianis & Jongejan 2006). 
The results showed that lemmatizer was as good 
as the stemmer for Swedish, slightly better for 
Danish and Norwegian but worse for Greek. 
These results are very dependent on the quality 

(errors, size) and complexity (diacritics, capitals) 
of the training data. 

In the current work we have used Jongejan & 
Haltrup’s lemmatizer as a reference, referring to 
it as the ‘suffix lemmatizer’. 

3 Delineation 

3.1 Why affix rules? 

German and Dutch need more advanced methods 
than suffix replacement since their affixing of 
words (inflection of words) can include both pre-
fixing, infixing and suffixing. Therefore we cre-
ated a trainable lemmatizer that handles pre- and 
infixes in addition to suffixes. 

Here is an example to get a quick idea of what 
we wanted to achieve with the new training algo-
rithm. Suppose we have the following Dutch full 
form – lemma pair: 

afgevraagd → afvragen 
(Translation: wondered, to wonder) 

If this were the sole input given to the training 
program, it should produce a transformation rule 
like this: 

*ge*a*d → ***en 
The asterisks are wildcards and placeholders. 
The pattern on the left hand side contains three 
wildcards, each one corresponding to one place-
holder in the replacement string on the right hand 
side, in the same order. The characters matched 
by a wildcard are inserted in the place kept free 
by the corresponding placeholder in the replace-
ment expression. 

With this “set” of rules a lemmatizer would be 
able to construct the correct lemma for some 
words that had not been used during the training, 
such as the word verstekgezaagd (Transla-
tion: mitre cut): 

 

Word verstek ge z a ag d 

Pattern * ge * a * d 

Replacement *  *  * en

Lemma verstek  z  ag en
 

Table 1. Application of a rule to an OOV word. 
 

 
For most words, however, the lemmatizer would 
simply fail to produce any output, because not all 
words do contain the literal strings ge and a and 
a final d.  We remedy this by adding a one-size-
fits-all rule that says “return the input as output”: 

 
* → * 
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So now our rule set consists of two rules: 
*ge*a*d → ***en 
* → * 

The lemmatizer then finds the rule with the most 
specific pattern (see 4.2) that matches and ap-
plies only this rule. The last rule’s pattern 
matches any word and so the lemmatizer cannot 
fail to produce output. Thus, in our toy rule set 
consisting of two rules, the first rule handles 
words like gevraagd, afgezaagd, 
geklaagd, (all three correctly) and getalmd 
(incorrectly) while the second rule handles words 
like directeur (correctly) and zei (incor-
rectly). 

3.2 Inflected vs. agglutinated languages 

A lemmatizer that only applies one rule per word 
is useful for inflected languages, a class of lan-
guages that includes all Indo-European lan-
guages. For these languages morphological 
change is not a productive process, which means 
that no word can be morphologically changed in 
an unlimited number of ways. Ideally, there are 
only a finite number of inflection schemes and 
thus a finite number of lemmatization rules 
should suffice to lemmatize indefinitely many 
words.  

In agglutinated languages, on the other hand, 
there are classes of words that in principle have 
innumerous word forms. One way to lemmatize 
such words is to peel off all agglutinated mor-
phemes one by one. This is an iterative process 
and therefore the lemmatizer discussed in this 
paper, which applies only one rule per word, is 
not an obvious choice for agglutinated lan-
guages. 

3.3 Supervised training 

An automatic process to create lemmatization 
rules is described in the following sections. By 
reserving a small part of the available training 
data for testing it is possible to quite accurately 
estimate the probability that the lemmatizer 
would produce the right lemma given any un-
known word belonging to the language, even 
without requiring that the user masters the lan-
guage (Kohavi 1995). 

On the downside, letting a program construct 
lemmatization rules requires an extended list of 
full form – lemma pairs that the program can 
exercise on – at least tens of thousands and pos-
sibly over a million entries (Dalianis and Jonge-
jan 2006). 

3.4 Criteria for success 

The main challenge for the training algorithm is 
that it must produce rules that accurately lemma-
tize OOV words. This requirement translates to 
two opposing tendencies during training. On the 
one hand we must trust rules with a wide basis of 
training examples more than rules with a small 
basis, which favours rules with patterns that fit 
many words. On the other hand we have the in-
compatible preference for cautious rules with 
rather specific patterns, because these must be 
better at avoiding erroneous rule applications 
than rules with generous patterns. The envisaged 
expressiveness of the lemmatization rules – al-
lowing all kinds of affixes and an unlimited 
number of wildcards – turns the challenge into a 
difficult balancing act. 

In the current work we wanted to get an idea 
of the advantages of an affix-based algorithm 
compared to a suffix-only based algorithm. 
Therefore we have made the task as hard as pos-
sible by not allowing language specific adapta-
tions to the algorithms and by not subdividing 
the training words in word classes.  

4 Generation of rules and look-up data 
structure  

4.1 Building a rule set from training pairs 

The training algorithm generates a data structure 
consisting of rules that a lemmatizer must trav-
erse to arrive at a rule that is elected to fire.  

Conceptually the training process is as fol-
lows. As the data structure is being built, the full 
form in each training pair is tentatively lemma-
tized using the data structure that has been cre-
ated up to that stage. If the elected rule produces 
the right lemma from the full form, nothing 
needs to be done. Otherwise, the data structure 
must be expanded with a rule such that the new 
rule a) is elected instead of the erroneous rule 
and b) produces the right lemma from the full 
form. The training process terminates when the 
full forms in all pairs in the training set are trans-
formed to their corresponding lemmas.  

After training, the data structure of rules is 
made permanent and can be consulted by a lem-
matizer. The lemmatizer must elect and fire rules 
in the same way as the training algorithm, so that 
all words from the training set are lemmatized 
correctly. It may however fail to produce the cor-
rect lemmas for words that were not in the train-
ing set – the OOV words. 
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4.2 Internal structure of rules: prime and 
derived rules 

During training the Ratcliff/Obershelp algorithm 
(Ratcliff & Metzener 1988) is used to find the 
longest non-overlapping similar parts in a given 
full form – lemma pair. For example, in the pair 

afgevraagd → afvragen 
the longest common substring is vra, followed 
by af and g. These similar parts are replaced 
with wildcards and placeholders: 

*ge*a*d → ***en 
Now we have the prime rule for the training pair, 
the least specific rule necessary to lemmatize the 
word correctly. Rules with more specific patterns 
– derived rules – can be created by adding char-
acters and by removing or adding wildcards. A 
rule that is derived from another rule (derived or 
prime) is more specific than the original rule: 
Any word that is successfully matched by the 
pattern of a derived rule is also successfully 
matched by the pattern of the original rule, but 
the converse is not the case. This establishes a 
partial ordering of all rules. See Figures 1 and 2, 
where the rules marked ‘p’ are prime rules and 
those marked ‘d’ are derived. 

Innumerous rules can be derived from a rule 
with at least one wildcard in its pattern, but only 
a limited number can be tested in a finite time. 
To keep the number of candidate rules within 
practical limits, we used the strategy that the pat-
tern of a candidate is minimally different from its 
parent’s pattern: it can have one extra literal 
character or one wildcard less or replace one 
wildcard with one literal character. Alternatively, 
a candidate rule (such as the bottom rule in Fig-
ure 4) can arise by merging two rules. Within 
these constraints, the algorithm creates all possi-
ble candidate rules that transform one or more 
training words to their corresponding lemmas. 

4.3 External structure of rules: partial or-
dering in a DAG and in a tree 

We tried two different data structures to store 
new lemmatizer rules, a directed acyclic graph 
(DAG) and a plain tree structure with depth first, 
left to right traversal. 

The DAG (Figure 1) expresses the complete 
partial ordering of the rules. There is no prefer-
ential order between the children of a rule and all 
paths away from the root must be regarded as 
equally valid. Therefore the DAG may lead to 
several lemmas for the same input word. For ex-
ample, without the rule in the bottom part of Fig-
ure 1, the word gelopen would have been lem-

matized to both lopen (correct) and gelopen 
(incorrect): 

gelopen: 
*ge* → **   lopen 
*pen → *pen  gelopen 

By adding a derived rule as a descendent of both 
these two rules, we make sure that lemmatization 
of the word gelopen is only handled by one 
rule and only results in the correct lemma: 

gelopen: 
*ge*pen → **pen  lopen 

 
 

Figure 1. Five training pairs as supporters for 
five rules in a DAG. 

 

 
The tree in Figure 2 is a simpler data structure 
and introduces a left to right preferential order 
between the children of a rule. Only one rule 
fires and only one lemma per word is produced. 
For example, because the rule *ge* → ** pre-
cedes its sibling rule *en → *, whenever the 
former rule is applicable, the latter rule and its 
descendents are not even visited, irrespective of 
their applicability. In our example, the former 
rule – and only the former rule – handles the 
lemmatization of gelopen, and since it pro-
duces the correct lemma an additional rule is not 
necessary.  

In contrast to the DAG, the tree implements 
negation: if the Nth sibling of a row of children 
fires, it not only means that the pattern of the Nth 
rule matches the word, it also means that the pat-
terns of the N-1 preceding siblings do not match 
the word. Such implicit negation is not possible 
in the DAG, and this is probably the main reason 
why the experiments with the DAG-structure 
lead to huge numbers of rules, very little gener-

* → * 
ui → ui 

*ge* → ** 
overgegaan → overgaan 

*en → * 
uien→ ui 

*pen →*pen 
lopen → lopen 

*ge*pen → **pen 
gelopen → lopen 

p 

p p 

d 

d 
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alization, uncontrollable training times (months, 
not minutes!) and very low lemmatization qual-
ity. On the other hand, the experiments with the 
tree structure were very successful. The building 
time of the rules is acceptable, taking small re-
cursive steps during the training part. The mem-
ory use is tractable and the quality of the results 
is good provided good training material. 

  
 

Figure 2. The same five training pairs as sup-
porters for only four rules in a tree. 

 

4.4 Rule selection criteria 

This section pertains to the training algorithm 
employing a tree. 

The typical situation during training is that a 
rule that already has been added to the tree 
makes lemmatization errors on some of the train-
ing words. In that case one or more corrective 
children have to be added to the rule1.  

If the pattern of a new child rule only matches 
some, but not all training words that are lemma-
tized incorrectly by the parent, a right sibling 
rule must be added. This is repeated until all 
training words that the parent does not lemmatize 
correctly are matched by the leftmost child rule 
or one of its siblings. 

A candidate child rule is faced with training 
words that the parent did not lemmatize correctly 
and, surprisingly, also supporters of the parent, 
because the pattern of the candidate cannot dis-
criminate between these two groups. 

On the output side of the candidate appear the 
training pairs that are lemmatized correctly by 
the candidate, those that are lemmatized incor-

                                                 
1 If the case of a DAG, care must be taken that the 
complete representation of the partial ordering of 
rules is maintained. Any new rule not only becomes a 
child of the rule that it was aimed at as a corrective 
child, but often also of several other rules. 

rectly and those that do not match the pattern of 
the candidate.  

For each candidate rule the training algorithm 
creates a 2×3 table (see Table 2) that counts the 
number of training pairs that the candidate lem-
matizes correctly or incorrectly or that the candi-
date does not match. The two columns count the 
training pairs that, respectively, were lemmatized 
incorrectly and correctly by the parent. These six 
parameters Nxy can be used to select the best can-
didate. Only four parameters are independent, 
because the numbers of training words that the 
parent lemmatized incorrectly (Nw) and correctly 
(Nr) are the same for all candidates. Thus, after 
the application of the first and most significant 
selection criterion, up to three more selection 
criteria of decreasing significance can be applied 
if the preceding selection ends in a tie. 

 
           Parent 
Child 

Incorrect Correct 
(supporters) 

Correct  Nwr Nrr 

Incorrect  Nww Nrw 

Not matched Nwn Nrn 

Sum Nw Nr 
 

Table 2. The six parameters for rule selection 
among candidate rules. 

 

A large Nwr and a small Nrw are desirable. Nwr is a 
measure for the rate at which the updated data 
structure has learned to correctly lemmatize 
those words that previously were lemmatized 
incorrectly. A small Nrw indicates that only few 
words that previously were lemmatized correctly 
are spoiled by the addition of the new rule. It is 
less obvious how the other numbers weigh in.  

We have obtained the most success with crite-
ria that first select for highest Nwr + Nrr - Nrw . If 
the competition ends in a tie, we select for lowest 
Nrr among the remaining candidates. If the com-
petition again ends in a tie, we select for highest 
Nrn – Nww . Due to the marginal effect of a fourth 
criterion we let the algorithm randomly select 
one of the remaining candidates instead. 

The training pairs that are matched by the pat-
tern of the winning rule become the supporters 
and non-supporters of that new rule and are no 
longer supporters or non-supporters of the par-
ent. If the parent still has at least one non-
supporter, the remaining supporters and non-
supporters – the training pairs that the winning 

* → * 
ui → ui 

*ge* → ** 
overgegaan → overgaan 

gelopen → lopen 

*en → * 
uien→ ui 

*pen →*pen 
lopen → lopen 

p 

p p 

d 
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candidate does not match – are used to select the 
right sibling of the new rule. 

5 Evaluation 

We trained the new lemmatizer using training 
material for Danish (STO), Dutch (CELEX), 
English (CELEX), German (CELEX), Greek 
(Petasis et al. 2003), Icelandic (IFD), Norwegian 
(SCARRIE), Polish (Morfologik), Slovene 
(Juršič et al. 2007) and Swedish (SUC).  

The guidelines for the construction of the 
training material are not always known to us. In 
some cases, we know that the full forms have 
been generated automatically from the lemmas. 
On the other hand, we know that the Icelandic 
data is derived from a corpus and only contains 
word forms occurring in that corpus. Because of 
the uncertainties, the results cannot be used for a 
quantitative comparison of the accuracy of lem-
matization between languages. 

Some of the resources were already disam-
biguated (one lemma per full form) when we re-
ceived the data. We decided to disambiguate the 
remaining resources as well. Handling homo-
graphs wisely is important in many lemmatiza-
tion tasks, but there are many pitfalls. As we 
only wanted to investigate the improvement of 
the affix algorithm over the suffix algorithm, we 
decided to factor out ambiguity. We simply 
chose the lemma that comes first alphabetically 
and discarded the other lemmas from the avail-
able data. 

The evaluation was carried out by dividing the 
available material in training data and test data in 
seven different ratios, setting aside between 
1.54% and 98.56% as training data and the re-
mainder as OOV test data. (See section 7). To 
keep the sample standard deviation s for the ac-
curacy below an acceptable level we used the 
evaluation method repeated random subsampling 
validation that is proposed in Voorhees (2000) 
and Bouckaert & Frank (2000). We repeated the 
training and evaluation for each ratio with sev-
eral randomly chosen sets, up to 17 times for the 
smallest and largest ratios, because these ratios 
lead to relatively small training sets and test sets 
respectively. The same procedure was followed 
for the suffix lemmatizer, using the same training 
and test sets. Table 3 shows the results for the 
largest training sets. 

For some languages lemmatization accuracy 
for OOV words improved by deleting rules that 
are based on very few examples from the training 
data. This pruning was done after the training of 

the rule set was completed. Regarding the affix 
algorithm, the results for half of the languages 
became better with mild pruning, i.e. deleting 
rules with only one example. For Danish, Dutch, 
German, Greek and Icelandic pruning did not 
improve accuracy. Regarding the suffix algo-
rithm, only English and Swedish profited from 
pruning. 

 

Language 
Suffix  
% 

Affix 
% Δ %  

N × 
1000 n 

Icelandic 73.2±1.4 71.3±1.5 -1.9 58 17
Danish 93.2±0.4 92.8±0.2 -0.4 553 5
Norwegian 87.8±0.4 87.6±0.3 -0.2 479 6
Greek 90.2±0.3 90.4±0.4 0.2 549 5
Slovene 86.0±0.6 86.7±0.3 0.7 199 9
Swedish 91.24±0.18 92.3±0.3 1.0 478 6
German 90.3±0.5 91.46±0.17 1.2 315 7
English 87.5±0.9 89.0±1.3 1.5 76 15
Dutch 88.2±0.5 90.4±0.5 2.3 302 7
Polish 69.69±0.06 93.88±0.08 24.2 3443 2

 

Table 3. Accuracy for the suffix and affix algo-
rithms. The fifth column shows the size of the 
available data. Of these, 98.56% was used for 
training and 1.44% for testing. The last column 
shows the number n of performed iterations, 
which was inversely proportional to √N with a 
minimum of two. 

6 Some language specific notes 

For Polish, the suffix algorithm suffers from 
overtraining. The accuracy tops at about 100 000 
rules, which is reached when the training set 
comprises about 1 000 000 pairs.  
 

  
Figure 3. Accuracy vs. number of rules for Polish 
Upper swarm of data points: affix algorithm. 
Lower swarm of data points: suffix algorithm. 
Each swarm combines results from six rule sets 
with varying amounts of pruning (no pruning and 
pruning with cut-off = 1..5). 
 

If more training pairs are added, the number of 
rules grows, but the accuracy falls. The affix al-
gorithm shows no sign of overtraining, even 
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though the Polish material comprised 3.4 million 
training pairs, more than six times the number of 
the second language on the list, Danish. See Fig-
ure 3. 

The improvement of the accuracy for Polish 
was tremendous. The inflectional paradigm in 
Polish (as in other Slavic languages) can be left 
factorized, except for the superlative. However, 
only 3.8% of the words in the used Polish data 
have the superlative forming prefix naj, and 
moreover this prefix is only removed from ad-
verbs and not from the much more numerous 
adjectives.  

The true culprit of the discrepancy is the great 
number (> 23%) of words in the Polish data that 
have the negative prefix nie, which very often 
does not recur in the lemma. The suffix algo-
rithm cannot handle these 23% correctly. 

The improvement over the suffix lemmatizer 
for the case of German is unassuming. To find 
out why, we looked at how often rules with infix 
or prefix patterns fire and how well they are do-
ing. We trained the suffix algorithm with 9/10 of 
the available data and tested with the remaining 
1/10, about 30 000 words. Of these, 88% were 
lemmatized correctly (a number that indicates the 
smaller training set than in Table 3). 

  
 German Dutch 

Acc. 
% Freq % Acc. % Freq % 

all 88.1  100.0 87.7 100.0
suffix-
only 88.7 94.0 88.1 94.9

prefix 79.9 4.4 80.9 2.4
infix 83.3 2.3 77.4 3.0
ä ö ü  92.8 0.26 N/A 0.0
ge infix 68.6 0.94 77.9 2.6

 

Table 4. Prevalence of suffix-only rules, rules 
specifying a prefix, rules specifying an infix and 
rules specifying infixes containing either ä, ö or 
ü or the letter combination ge. 
 

Almost 94% of the lemmas were created using 
suffix-only rules, with an accuracy of almost 
89%. Less than 3% of the lemmas were created 
using rules that included at least one infix sub-
pattern. Of these, about 83% were correctly 
lemmatized, pulling the average down. We also 
looked at two particular groups of infix-rules: 
those including the letters ä, ö or ü and those 
with the letter combination ge. The former 
group applies to many words that display umlaut, 
while the latter applies to past participles. The 

first group of rules, accounting for 11% of all 
words handled by infix rules, performed better 
than average, about 93%, while the latter group, 
accounting for 40% of all words handled by infix 
rules, performed poorly at 69% correct lemmas. 
Table 4 summarizes the results for German and 
the closely related Dutch language. 

7 Self-organized criticality 

Over the whole range of training set sizes the 
number of rules goes like dNC.  with C<0 , and N 
the number of training pairs. The value of C and 
d not only depended on the chosen algorithm, but 
also on the language. Figure 4 shows how the 
number of generated lemmatization rules for Pol-
ish grows as a function of the number of training 
pairs.  

  
Figure 4.  Number of rules vs. number of training 
pairs for Polish (double logarithmic scale). 
Upper row: unpruned rule sets 
Lower row: heavily pruned rule sets (cut-off=5) 
 

There are two rows of data, each row containing 
seven data points. The rules are counted after 
training with 1.54 percent of the available data 
and then repeatedly doubling to 3.08, 6.16, 
12.32, 24.64, 49.28 and 98.56 percent of the 
available data. The data points in the upper row 
designate the number of rules resulting from the 
training process. The data points in the lower 
row arise by pruning rules that are based on less 
than six examples from the training set. 
The power law for the upper row of data points 
for Polish in Figure 4 is 

87.080.0 trainingrules NN =
 

151



As a comparison, for Icelandic the power law for 
the unpruned set of rules is 

90.032.1 trainingrules NN =
 

These power law expressions are derived for the 
affix algorithm. For the suffix algorithm the ex-
ponent in the Polish power law expression is 
very close to 1 (0.98), which indicates that the 
suffix lemmatizer is not good at all at generaliz-
ing over the Polish training data: the number of 
rules grows almost proportionally with the num-
ber of training words. (And, as Figure 3 shows, 
to no avail.) On the other hand, the suffix lem-
matizer fares better than the affix algorithm for 
Icelandic data, because in that case the exponent 
in the power law expression is lower: 0.88 versus 
0.90.  

The power law is explained by self-organized 
criticality (Bak et al. 1987, 1988). Rule sets that 
originate from training sets that only differ in a 
single training example can be dissimilar to any 
degree depending on whether and where the dif-
ference is tipping the balance between competing 
rule candidates. Whether one or the other rule 
candidate wins has a very significant effect on 
the parts of the tree that emanate as children or as 
siblings from the winning node. If the difference 
has an effect close to the root of the tree, a large 
expanse of the tree is affected. If the difference 
plays a role closer to a leaf node, only a small 
patch of the tree is affected. The effect of adding 
a single training example can be compared with 
dropping a single rice corn on top of a pile of 
rice, which can create an avalanche of unpredict-
able size. 

8 Conclusions 

Affix rules perform better than suffix rules if the 
language has a heavy pre- and infix morphology 
and the size of the training data is big. The new 
algorithm worked very well with the Polish Mor-
fologik dataset and compares well with the 
Stempel algorithm (Białecki 2008).  

Regarding Dutch and German we have ob-
served that the affix algorithm most often applies 
suffix-only rules to OOV words. We have also 
observed that words lemmatized this way are 
lemmatized better than average. The remaining 
words often need morphological changes in more 
than one position, for example both in an infix 
and a suffix. Although these changes are corre-
lated by the inflectional rules of the language, the 
number of combinations is still large, while at 
the same time the number of training examples 
exhibiting such combinations is relatively small. 

Therefore the more complex rules involving infix 
or prefix subpatterns or combinations thereof are 
less well-founded than the simple suffix-only 
rules. The lemmatization accuracy of the com-
plex rules will therefore in general be lower than 
that of the suffix-only rules. The reason why the 
affix algorithm is still better than the algorithm 
that only considers suffix rules is that the affix 
algorithm only generates suffix-only rules from 
words with suffix-only morphology. The suffix-
only algorithm is not able to generalize over 
training examples that do not fulfil this condition 
and generates many rules based on very few ex-
amples. Consequently, everything else being 
equal, the set of suffix-only rules generated by 
the affix algorithm must be of higher quality than 
the set of rules generated by the suffix algorithm. 

The new affix algorithm has fewer rules sup-
ported by only one example from the training 
data than the suffix algorithm. This means that 
the new algorithm is good at generalizing over 
small groups of words with exceptional mor-
phology. On the other hand, the bulk of ‘normal’ 
training words must be bigger for the new affix 
based lemmatizer than for the suffix lemmatizer. 
This is because the new algorithm generates im-
mense numbers of candidate rules with only 
marginal differences in accuracy, requiring many 
examples to find the best candidate. 

When we began experimenting with lemmati-
zation rules with unrestricted numbers of affixes, 
we could not know whether the limited amount 
of available training data would be sufficient to 
fix the enormous amount of free variables with 
enough certainty to obtain higher quality results 
than obtainable with automatically trained lem-
matizers allowing only suffix transformations. 

However, the results that we have obtained 
with the new affix algorithm are on a par with or 
better than those of the suffix lemmatizer. There 
is still room for improvements as only part of the 
parameter space of the new algorithm has been 
searched. The case of Polish shows the superior-
ity of the new algorithm, whereas the poor re-
sults for Icelandic, a suffix inflecting language 
with many inflection types, were foreseeable, 
because we only had a small training set. 

9 Future work  
Work with the new affix lemmatizer has until 
now focused on the algorithm. To really know if 
the carried out theoretical work is valuable we 
would like to try it out in a real search setting in 
a search engine and see if the users appreciate 
the new algorithm’s results. 
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