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Preface

In the first phase of the project Methodologies for Constructing Knowledge
Bases for Natural Language Processing Systems we made an analysis of the
state–of–the–art in knowledge engineering for natural language understand-
ing systems and adopted the 3-step methodology proposed in Hobbs (1984)
and its 9-step extension as our starting point for further work. This proposal
was argued for in Project Report Nr 1.

The objectives of the current phase of the project (Work Package 2) were
twofold. One was to determine which kinds of knowledge should be encoded
in natural language understanding systems and how the nature of this infor-
mation has repercussions on the choice of knowledge engineering strategies.
The current report (Project Report Nr 2) addresses these issues for what we
argue are two related yet clearly different aspects of knowledge engineering,
viz. knowledge elicitation and knowledge organisation. Making this distinc-
tion has allowed us to clarify and revise the methodology outlined in Project
Report Nr 1. Project Report Nr 2 thus has two major parts: one dealing
with organisation, one with elicitation. The paper on knowledge organisa-
tion was the responsibility of the Edinburgh team; it explores the nature
and goals of conceptual modeling. The paper on elicitation was produced
by the Copenhagen team and describes an information typology obtained
by applying a particular knowledge elicitation technique.

The other objective of this phase of the project was an examination of the
characteristics possible support material should have in such a knowledge
engineering enterprise. This is reported on in Project Report Nr 3.
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1 Introduction

The methodology we adopted as a starting point, viz. the methodology
proposed by Hobbs (1984, 1986), can be summarized in three steps:

1. Select the facts relevant to the domain.

2. Organise the facts into domain clusters.

3. Formalise the facts.

Underlying this seemingly simple methodology were a number of well thought
out principles governing the process of knowledge engineering for natural
language understanding systems:

� The standard sublanguage approach to domain modeling (stating do-
main dependent semantic constraints) must be supplemented with the
creation of a knowledge base containing extra-linguistic knowledge.

� The aim of the methodology is to extract knowledge that is presup-
posed but not explicitly mentioned in the analysed texts.

� The main principle in the process of knowledge base creation is selec-
tivity: one should attempt only to encode facts directly relevant to the
natural language processing task at hand.

� Word meanings should be tuned to domain usage. Instead of formal-
izing the general meaning of a word one has to find the aspects of the
meaning which are relevant to the domain.

In Project Report Nr 1 we argued why we wanted to take this 3-step method-
ology and its underlying philosophy as the starting point for our work. We
also reported how the methodology was extended by Hobbs and Navarretta
into a more detailed 9-step method.

However, subsequent investigation has revealed that the 9-step extension
misses some of the important characteristics underlying the original pro-
posal. For example, the original methodology makes a clear distinction
between knowledge elicitation and knowledge organisation. In the 9–step
method this distinction is somewhat blurred: it assumes that the the knowl-
edge organisation phase can be driven by the highest layers of world knowl-
edge (the “core theories”), knowledge that is presupposed to exist in the

4



system already. Little or no attention is paid to how these “core theories”
can be extracted from the knowledge engineer and how this commonsense
knowledge should be organised before encoding of it takes place.

A number of other weak points in both methodologies emerged during the
current phase of the project. In particular, neither methodology appears
to provide a formal framework for the process of domain organisation; i.e.
there are no guidelines about how the extracted knowledge should be anal-
ysed, and it emerged from our practical application of the methodology that
frequent appeals need to be made to the intuition of the knowledge engi-
neer. Hobbs (1984) does list some useful strategies for axiomatizing but we
would like to see these incorporated into a more rigorous general approach
for organising the elicited facts into a general and consistent theory of the
domain.

We also have a worry about the purely abductive nature of Hobbs’ axioma-
tization. It could be argued that domain organisation must be independent
of the chosen inference engine and that tailoring a domain to the chosen
inference engine should be a separate step after the domain model has been
designed.

These comments and suggested corrections apply mainly to the phase of
domain organisation. For the elicitation phase we remain with the original
Hobbs framework, although it is a very general methodology which is po-
tentially also resource-intensive. We will argue that there are other useful
strategies that can be used for the elicitation of specific knowledge types.
This will be described as a process of specialisation, a process which we will
argue allows for more wide-ranging automatization and will therefore be less
resource-intensive.

So the main lesson learnt so far in the project is that elicitation and organ-
isation are of a very different nature.

In the elicitation phase the problem is how to extract information relevant
to a particular domain. Here we presuppose that we have textual sources of
information (a text corpus, written protocols, interviews with experts, etc)
and a knowledge engineer as a source of commonsense knowledge.

The problems for which we want to develop a methodology comprise:

1. How do we determine which facts are relevant to the task?

2. What methods can be used for extracting them from the text data?
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3. How do we extract presupposed information not mentioned in the
texts?

4. What computer tools can be used for analysing a large text corpus?

5. What are the requirements for the corpus itself?

6. Which support materials are useful and/or necessary for the elicitation
phase?

In the organisation phase or the conceptual analysis phase the question is
how to analyse the extracted information in terms of the knowledge base
to be built. The extracted facts need to be represented in a coherent way,
bringing out mutual dependencies and constraints as well as general laws of
the domain. The problems for which we want to develop tools and techniques
in this phase comprise the following:

1. What are the general principles that underlie the knowledge base for
a natural language understanding system? These principles determine
the overall structure of the conceptual analysis and provide the oper-
ational framework for conceptual modelling.

2. What is the process of the text comprehension? In other words, how
do we define the task the natural language understanding system is
expected to perform? For example, what does “text comprehension”
mean in a particular application?

3. What types of knowledge does the knowledge base have to contain for
the natural language processing system to be able to perform the task?

4. What are the basic domain independent principles for organisation of
each of the knowledge types? In other words, what are well-formed
knowledge types.

5. How can these principles be applied for organising the elicited facts
into conceptually coherent structures?

6. How can the conceptual structures be formally represented?

We will argue in this report that it is important to separate out the elicitation
work from the conceptual modeling work, while at the same time showing
how one can guide the other.
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In the first paper of the report we provide the theoretical basis for the com-
positional design of domain models. Our approach consists of conceptuali-
sation rather than axiomatisation, but this doesn’t mean that the resulting
structures cannot be represented in predicate logic. We also define a generic
task of text comprehension. We then define levels of complexity for this
task, and define knowledge types needed for the execution of this task at its
different levels of complexity. Then we introduce general principles for the
process of knowledge base organisation and define what a domain model is
and how it can be formalised. The rest of the first paper is devoted to a
more detailed yet informal exploration of the knowledge types.

The second paper in this report is concerned with the elicitation phase.
Given the abstract specification of a domain model, a natural language
understanding task, and knowledge types appropriate to them, the paper
attempts to arrive at an understanding of how information presupposed in
the texts can be extracted. As a working method for this, the paper suggests
a combination of those items of the 3–step and 9–step methodologies which
are relevant to the elicitation strategy. The paper reports on an application
of this revised methodology to text corpora in three different domains.
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Part 1:
Conceptual Modeling: Towards a Typology for Knowledge

Organisation
Responsible: Andrei Mikheev and Marc Moens

HCRC Language Technology Group
University of Edinburgh
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2 Conceptual modeling

Knowledge organisation or conceptual modeling is arguably one of the most
important stages of knowledge engineering. Its aim is to interpret the vast
amount of individual facts and rules gathered at the stage of knowledge elic-
itation and to organise these into a coherent model. The creation of such a
model is by no means an easy task. Many of the steps and decision proce-
dures that make up this process cannot be formalised and are guided instead
by the knowledge engineer’s intuitive expertise. But in spite of this infor-
mality, the overall framework for conceptual analysis can be given a formal
characterization. This framework can then be used by knowledge engineers
to guide them through the conceptual modeling phase. It even allows them
to create different conceptual models for the same domain without creating
inconsistencies.

The real world, or the part of it that the knowledge engineer is trying to
model, typically does not consist of a finite number of clearly discernable
facts. Nevertheless, the model the knowledge engineer needs to develop has
to be finite and discrete. To eliminate this apparent contradiction a special
utility is used, viz. the concept. A concept is an abstraction that selects fea-
tures of importance for the task at hand and ignores task–irrelevant details
and complexities. It represents an aspect of reality, a workable approxima-
tion. Concepts can be organised into complex conceptual structures. These
structures are the basic material for conceptual modeling.

One can contrast two principles of ontological categorization (cf. Rosch
1977a, b):

� a concept aims at capturing as many features (properties) as possible
shared by its instantiations; in other words it aims to be as specific as
possible.

� a concept aims at capturing as many instances as possible in order to
reduce the number of needed categories; in other words it aims to be
as general as possible.

In this section we explore some techniques for representing the outside world
in a discrete model. We determine some basic principles of knowledge organ-
isation and suggest a notation for conceptual modeling. This investigation
by and large remains at the conceptual and epistemological levels (Brachman
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1979). Where natural language understanding tasks are concerned, there is
also a particular relation between words and concepts, and throughout our
investigation we will take seriously the problem of linguistic anchoredness.

2.1 The model

A conceptual model is a simplified approximation of a set of phenomena in
the real world taking into account the particular task for which this model
is needed. This set of phenomena is normally considered to form a coherent
cluster or domain. The main problem with conceptual modeling is that it
is extremely difficult to create a fully consistent model for a large domain.
Most successful implementations of conceptual models are concerned with
so-called micro-world models—i.e. models which encode knowledge about
fairly tiny and very simplified subsets of the real world.

In conceptual modeling one can reuse the same concepts (or concept names)
and relations (or relational names) in different domains. However, the or-
ganisation of concepts and relations is likely to be quite different for every
single model thus constructed: different models can use the same words and
concepts, but differences in the rules that apply to those concepts can make
the micro-models inconsistent with one another. Nevertheless we will argue
that it is possible to organise a complex model as a collection of several
micro-models, some of them mutually inconsistent yet each of the micro-
models being internally consistent. These micro-models all have complex
patterns of relations and interaction with each other that determine the
behaviour of the complex model itself.

When a natural language understanding system is used as the natural lan-
guage interface for accessing a database, the domain model can be inter-
preted as a closed world. However, for many other tasks, natural language
systems need to be equipped with open world models, where the model
contains information that is true or false and the status of all other infor-
mation that the system does not contain is considered as unknown. One
could describe this kind of model as a “shallow” model: it only contains the
information that is necessary for achieving the desired level of complexity—
typically in natural language processing, the desired depth of understanding.
The model may have semantic gaps that are irrelevant to the task.
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It is possible in theory to extend an open-world model to a closed one, but
in practice this requires a lot of effort and does not necessarily result in a
dramatic increase in problem solving capacity.

Since the number of facts about almost any topic can be virtually limitless, it
is necessary for successful domain modeling to first determine the following
characteristics of the model:

Scope. The scope is correlated to the width of the domain of interest.
Determining the scope of the model involves assessing how much of
a domain needs to be encoded. Depending on this, a decision can be
made on the size and the nature of subclusters in the model.

Granularity. The level of granularity of the model is correlated to the
depth of knowledge required for representing the domain’s concepts.
Determining the required level of granularity involves looking for the
most simple approximation or the highest level of abstraction appro-
priate to the task and to avoid unneeded detail.

Problem solving requirements. The required problem solving capabili-
ties come from an analysis of the inferential operations the system will
have to perform in performing the task at hand. In natural language
understanding systems this comprises traditional reasoning capabili-
ties but more importantly the capacity to use the model for linguistic
processes such as resolution.

In the case of conceptual modeling for natural language understanding sys-
tems, the scope and the level of granularity of the domain are implicit in
the source texts we are working from, as well as in the protocols of dia-
logues with experts. This means that conceptual modeling must start with
a careful restructuring of the overall domain (and of its source texts) into
subdomains, to then determine the level of abstraction for each of the sub-
domains. The result of these steps should be a structured organisation of
the subdomains, both internally (a structuring of each subdomain) as well
as externally (structuring the subdomains with respect to each other).

The third step, determining what problem solving capabilities are required,
can lead to many different answers when doing knowledge engineering for
natural language processing purposes. Apart from standard deductive tech-
nique, Hobbs (Hobbs et al. 1990) has argued for the pervasive use of abduc-
tive reasoning methods. Others have argued for other forms of defeasible
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reasoning (e.g. Mercer 1989). This suggests that the model should not be
oriented towards a specific type of reasoning but should be constructed in
such a way that it can be adapted to different inference engines.

2.2 The knowledge base

Amongst the properties of conceptualization are the following:

Internal interpretation. Any knowledge structure consists of two parts:
descriptive knowledge, a description of the way the domain is organ-
ised, and interpretation knowledge, which interprets how the descrip-
tive knowledge can be used for solving a particular task. One and the
same instance of descriptive knowledge can have several interpretations
and can serve towards solving different tasks. Descriptive knowledge is
usually considered as a knowledge base whereas interpretation knowl-
edge is usually considered as a machinery for knowledge processing.

Internal organisation. Descriptive knowledge constitutes the structure
where concepts are linked to one another with a variety of relations.
The semantics of a concept is determined by its attributes (properties);
the semantics of a link is determined by its operational properties.

Compositionality. Building a structured knowledge organisation, and re-
cursively embedding knowledge structures, can be done by means of
the following techniques:

Abstraction. This allows the knowledge engineer to organise individ-
ual concepts in types by having them share common properties.

Generalisation. This allows the knowledge engineer to generalise
from individual properties of conceptual types to common prop-
erties, and to construct complex type–supertype subsumption re-
lations with multiple inheritance of properties.

Aggregation. This allows the knowledge engineer to decompose com-
plex concepts into their components. Each of these components
can be decomposed further depending on the level of granularity.

Internal Dependencies. Concepts depend on each other in a number of
different ways, e.g. functionally or causally. Knowledge about depen-
dencies constitutes so-called dynamic knowledge, where change of one
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conceptual entity causes changes to other ones. There are special con-
ceptual types for representing this type of of dependency, viz. actors
and rules. Actors are active elements that change other elements of
the knowledge base or create new ones. Rules describe the semantics
of a transformation.

To summarize a Knowledge Base is a collection of concepts, conceptual
relations and transformations that are organized in structural clusters by
means of abstraction, generalisation and aggregation. Such a collection is
used by different interpretation procedures for solving different tasks.

One of the basic problems in conceptual analysis is how to represent any
given item. In many knowledge engineering efforts this problem has not seen
tackled in a systematic way. The result of this is that the same knowledge
unit is sometimes represented as a concept in one system and as a relation
in another. In the field of expert systems where each implementation has
its own unique and self-contained task to perform, this does not matter too
much. But for natural language systems there must be a more systematic
mapping from linguistic items into conceptual ones (concepts and relations)
since the tasks performed by natural language systems are more general
across implementations.

In order to tackle this problem, one could suggest the following principle:
a concept corresponds to any salient phenomenon of the world that is being
modeled. This means that not only objects are concepts, but also events,
attributes, propositions, states and whatever else exists in the world. So
apart from nouns, which are usually mapped into concepts anyway, verbs,
adjectives and adverbs, which usually correspond to relations, would also be
mapped into concepts. For example, for the adjective “red” we could have
the conceptual type red(x), where x stands for any instance of redness, in-
stead of the relation red(y), where y stands for an instance of an object. To
represent the fact that the object y is red, we can use a relation like “charac-
teristic” (or char): red(x) & object(y) & char(x,y). For eventualities,
something similar can be done, adopting a Davidsonian approach. One of
the notations derived from this approach is Hobbs’ ontological promiscuity
notation (Hobbs 1985b). A further extension of the approach is also possi-
ble to include a subatomic event semantics (cf. Parsons 1990). Finally, it is
important to note that each knowledge cluster, proposition, fact etc., itself
has the status of a concept and thus can be used as a single unit in other
knowledge structures.
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To distinguish concepts from relations we can use Quine’s adage, “To be
is to be the value of a variable”. This means that we can quantify over a
concept and refer to its instances by means of a variable. In this vein, Sowa
suggests the following tests for determining whether t is of type “concept”:

� Can you say “There exists an instance of t” ?

� Can you count instances of t or measure some amount of t?

� Can you refer back to an instance of t?

Relations, on the other hand, correspond to the organisational properties
of concepts. Some of these properties can be represented in natural lan-
guage by means of prepositions, case endings, word order variations, etc.
They are often referred to as thematic relations or roles. Another kind of
relation corresponds to the knowledge organisation principles of abstraction,
generalisation and aggregation. And there are still other kinds of relations,
for example logical, causal, temporal etc. The initial set of relations to be
used in the model must be chosen very carefully, and for every relation a
semantics must be provided.

Taking this approach we can achieve a more direct mapping between natural
language and logic. However such a representation is likely to be more
detailed and complex than more traditional representations where relations
are chosen in an ad hoc manner. If we want to maintain the more direct
mappings but at the same time avoid these complexities, it is possible to
define macro-relations which can be used as shorthand of entire knowledge
structures. These macro-relations are defined in terms of the initial set of
relations and can be expanded into appropriate knowledge clusters.

2.3 Conceptual language

It has often been argued (e.g. Lenat & Brown 1984) that the choice of rep-
resentation formalism is of critical importance for getting useful results in
the knowledge discovery process. It is quite common in knowledge engineer-
ing to choose a conceptual representation scheme which is very close to the
target knowledge representation language.
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This has the advantage that one can tailor the conceptual scheme taking
into account the knowledge representation’s own strengths and weaknesses.
However, having closely tailored conceptual and knowledge representation
schemes can also lead to an undesirable bias.

To avoid this bias, it is important to maintain the conceptual modeling phase
as application independent as possible. However, this creates a need for a
conceptual notation which is independent of the knowledge representation
language. And extra effort will be required to adjust the conceptual notation
to the real system.

One such application independent notation is the predicate calculus and its
various extensions—such as many sorted extensions, ontologically promiscu-
ous extensions, etc. However, it has been argued that this notation scheme
does not map straightforwardly onto natural language, and that complex for-
mulae in this notation are not very readable. For experienced computational
linguists or knowledge engineers, this may not pose a real problem. But we
are aiming for a situation where the computational linguist or knowledge
engineer tries to construct a knowledge base for natural language processing
purposes, with the help of an expert. It is desirable to be able to do this
domain modeling in a notation which is easily understood by the knowl-
edge engineer as well as by the domain expert. Normal predicate calculus
notation could be argued not to have this property.

Graph notation for knowledge engineering has been advocated by many
authors (e.g. Buzan 1974, Nowak & Gowin 1983) as particularly helpful in
this regard. Unlike traditional notation schemes, graphs allow a change of
focus at any time: any node in a graph can be considered as a hook for
more graph material. The ability of graphs to grow from almost any point
also closely corresponds to the free association techniques often used in the
knowledge elicitation process, thus adding ease of encoding in that respect
also.

When adopting a graph notation as a conceptual formalism for knowledge
engineering for natural language processing purposes it is necessary to ensure

� that the expressive power of the graph notation is similar to that of
some predicate calculus (and that either can be translated into the
other);

� that it has a formally developed syntax and semantics;
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� that it allows for a systematic mapping to and from natural language;

� that it is in a readable form with a close correspondence to natural
language constructions.

Such a conceptual language can then be viewed as an intermediate repre-
sentation between natural language and formal logic. Put differently, the
conceptual language can be considered as a high level language with the
predicate calculus as an assembler.

The Conceptual Graph (cg) formalism Sowa developed seems to fulfill these
characteristics. It allows for a systematic translation from and to natural
language; it is more readable or at least has a less steep learning curve than
formal logic; and it has a formal translation to predicate calculus. The
cg formalism embodies a logical system, based on the rules of inference
developed by Peirce for existential graphs. cg can also be extended to
other logics such as modal logic, temporal logic, etc. This means that cg
can serve both as an intermediate conceptual language for translation to
the other formalisms and as final knowledge representation language. The
former property can be used for quick system prototyping.

In the remainder of this paper we will be using cg notation, but this does
not mean that we want to argue that the knowledge engineering process can
only be carried out by means of this formalism. We do want to claim that
cg provides a useful notation formalism for the conceptual modeling aspect
of knowledge engineering. But it is just that, a notation.

3 Types of knowledge

In this section we investigate different knowledge types that can be used
by a system during a natural language understanding task. The approach
we take here is to first determine a generic task specification for a natural
language understanding system, to break this down into different levels of
complexity, and to find out what extra-linguistic knowledge can contribute
to these tasks.
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The main goal of natural language understanding systems is to extract con-
ceptual content of natural language statements in order to derive episodic
or discourse structure that represents structural, causal, temporal, spatial,
logical and other relations between domain concepts and propositions. The
resulting interpretation can then be accessed and searched during the ques-
tion answering process.

To perform this mapping of natural language expressions to and from con-
ceptual knowledge, two kinds of knowledge are needed in the knowledge
base of the natural language understanding system: linguistic knowledge
and conceptual knowledge. Both of these have an interpretational compo-
nent for mapping to one another.

But one can also distinguish different levels of complexity in the text compre-
hension task. Reaching each level involves performing more reasoning, and
sometimes reasoning of a different kind. In what follows, we represent all
these levels in a modular way, but in a real life application a model may be
preferred which integrates all the relevant knowledge (including linguistic)
and allows simultaneous access of the various knowledge sources.

1. Linguistic-Semantic level
The first task of an NLU system is the transformation of linguistic
content of a sentence to its conceptual representation. Morphology
and grammar are used to parse a sentence and to create its formal
syntactic structure. The mapping of the syntactic structure into the
conceptual one assumes the existence of a type hierarchy based on
abstraction and generalisation.

There are different kinds of ambiguity at the level of linguistic pro-
cessing which cannot be resolved without accessing knowledge about
semantic compatibility of the concepts involved. For every concept a
canonical structure must be defined which determines how different
concept types fit together. This canonical structure imposes not only
semantic constraints but also determines conceptual relations for type
coexistence in one structure.

At this level of complexity the system is capable of resolving various
linguistic phenomena by means of contributions from the morphology
component, preparsing strategies, the grammar, the conceptual tax-
onomy and canonical structures. However, at this level only explicitly
mentioned information is being extracted.
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2. Static Pragmatic level
At the second level of complexity the system enriches the explicitly
defined semantic contents that was created at the first level by adding
background knowledge. This background knowledge is based on the
aggregation of different conceptual types into coherent clusters which
are used to resolve semantic gaps. It can also contribute to the resolu-
tion of definite expressions, certain anaphoric references, prepositional
attachment ambiguities, metonymy, ellipsis, etc. For example, in lan-
guage a concept can be referred to by one of its components or the
component is referred by means of its aggregate. Background knowl-
edge enables the system to detect and perform so-called conceptual
shifts to resolve such expressions. Also, the activation of background
knowledge may allow the system to create a list of expected words,
related to the current one. This list can be considered as a more
advanced version of semantic clusters at the preparsing level and its
predictive power may in some instances simplify the task of the parser.

One can distinguish four types of static background knowledge:

Definition. This knowledge type is akin to Aristotelian concepts: de-
fine a concept by means of its necessary and sufficient conditions.
Thus a concept can be defined by means of its genus (its super-
type) and its differentia (its properties that distinguish it from
its genus). This approach allows one to decompose concepts into
primitives and to represent an internal view of the concept. How-
ever, in many cases it is impossible to provide such a definition
for a concept.

Schemata. These represent an external view of the concept—i.e. how
the concept is used and coexists with other concepts, and which
knowledge structures it takes part in. This is a Wittgensteinian
view of concepts: since for many concepts one cannot provide a
formal definition by stating its necessary and sufficient conditions,
it is sometimes possible to determine the knowledge cluster this
concept is used in and to define the concept by describing its
usage. One concept can have more than one schema, allowing
the encoding of multiple views of the concept.

Prototype. A prototype is a representation of a typical individual of
a class. A prototype definition can be arrived at by specialising
the schemata and assigning default values for certain characteris-
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tics of it. A prototype allows one to infer presupposed individual
characteristics that were not mentioned explicitly.

Constraints. These are laws which, for example, determine what the
possible quantitative or qualitative characteristics are of a given
concept.

Apart from a more precise treatment of the linguistic data by means of
conceptual shifts and word expectations, it is also possible at this level
to infer implicit information by using static background knowledge
encoded in definitions, schemata, prototypes and constraints.

3. Dynamic Pragmatic level
At the third level of complexity the system is equipped with dynamic
knowledge. This is knowledge which allows the system to generate new
information from explicitly information by using laws of dependencies
within the domain. By applying these laws to the conceptual structure
the system can infer new information that will fill the semantic gaps
in its representation. Usually dynamic knowledge exists in two forms:
production rules that determine different sorts of inference, and actors
that activate corresponding production rules for knowledge base trans-
formations. One can distinguish at least three types of dependency:

� conceptual dependencies relate to laws which allow one to infer a
new peace of information from the existing one. This inference
can be organised in different ways. The most common way is to
implement a logical inference machinery that allows the chain-
ing of implications to deduce the new knowledge. In the work of
Schank and Hobbs a different strategy is used, which allows con-
clusions that are not necessary logically valid. Such knowledge
is usually represented by means of rules which determine which
implications follow from certain explicitly stored data.

� functional dependencies allow to calculate values of some charac-
teristics that depend on explicitly mentioned information if they
are linked by functional dependencies. To perform this sort of
calculation actors are usually defined as a procedural call.

� dynamic correction is used for complex simulation models that
change their states cyclically in time. This kind of knowledge
checks for the current state and performs an update whenever it
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is necessary. However, for the purpose of language comprehension
this depth of knowledge is usually not needed.

At this level of complexity it is possible to organise the comprehension
of a complex discourse with implicit connections and presuppositions
between sentences and as well as answering direct and indirect ques-
tions such a system would also be capable of providing explanations
and of handling expectations that don’t materialize.

Every knowledge type that was mentioned above must have special inter-
pretational strategies that use this knowledge for problem solving. These
strategies usually are part of the knowledge representation machinery and
are provided to a knowledge engineer. However, to avoid implementation
bias, the knowledge engineer should annotate each type of knowledge with
a specification of how that piece of knowledge should be used for the task
at hand.

4 The taxonomy

A knowledge taxonomy is the result of structuring knowledge in accordance
with the rule of knowledge compositionality (i.e. abstraction, generalisation
and aggregation). The first main kind of taxonomy is the type hierarchy,
the result of knowledge abstraction and generalisation. Another type of
taxonomy is one that encodes mereological relations, the result of knowledge
aggregation.

4.1 Type hierarchy

A type hierarchy is defined by means of the is-a link. It constitutes a partial
order graph whose properties are reflexive, antisymmetric and transitive.
The type hierarchy is constructed from a set of properties describing things
in the world and value sets for these properties. Each type is an unique set
of properties with assigned values.

However this is-a relation in fact is overloaded by two relations: abstraction
(INDIVIDUAL < TYPE) and generalisation (TYPE-1 < TYPE-2). Both
of them have slightly different inferential features. Also, the relation (TYPE
< INDIVIDUAL) is always considered ill-typed.
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As was mentioned before, successful domain modeling is not possible for the
world as it is. Instead, a world model could be considered as a collection
of microworld models that co-exist by sharing the basic principles of their
organisation. This assumption implies that every domain needs its own type
hierarchy which may or may not be compatible with another domain. How-
ever two hierarchies must be compatible if they correspond to hierarchically
related domains.

The main criteria for the type hierarchy are how useful the properties are
for modeling the domain. It will not necessarily form a discriminational tree
structure but rather a complex multiple inheritance structure with several
main types at the top.

Generalizing the ontological study for conceptual types (Guarino 1991) we
will distinguish three main types of concepts: entities, attributives and roles.
Entities and attributives constitute the natural type. Natural types exist
as such. They are semantically rigid, i.e. they don’t depend on any particular
situative framework. For instance, the concept types human, car, move,
red, number or time-point are natural. Role types are semantically non-
rigid and exist only in the framework of some domain. For instance, the type
doctor exists only in the framework of professional relations. The notion of
foundedness allows one to distinguish between two types of natural concepts.
Entities are essentially independent and can be instantiated. Attributives
are founded on entities and can be recognized only in presence of some entity.
For example, the type color is an attributive since one cannot point to a
color without pointing to an object. Note that both color and object are
semantically rigid because they remain themselves in any possible situation.
Roles are always founded on natural types. For example, the role type
doctor is founded on the natural type human because one cannot point
to a doctor without pointing to a human. If a role is founded on an entity it
inherits all the properties of the entity and will be called entity-role. Roles
for attributives will be called attributive roles.

Natural types constitute an ontology that tends to be domain independent.
Role types are domain dependent and usually constitute a lattice or arbitrary
partial ordered graph.

Since the notion of type is very close to the notion of set, set theoretic
operations like conjunction, disjunction and difference can be used for the
dynamic creation of new types from existing ones. However, there is also
sufficient difference between a type and a set. Two sets are considered equal
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if they consist of the same elements, but for types this is not true: extensional
equivalence does not imply an intensional one.

There is one important thing to note about the conceptual taxonomy. It
must have a mapping to the linguistic categories but it is purely semantic.
This means that the knowledge engineer must avoid linguistic bias in the
taxonomy and the properties for a type characterisation must be derived
from the conceptual analysis rather then from the linguistic one. Word
sense is represented by mapping lexical items to ontological concepts. Each
type should be considered from the semantic point of view and in some cases
it can have straight linguistic concordance but in many cases it does not.

4.2 Aggregation

Mereological relations represent the aggregation of different entities or their
roles into a composite type. Together with is-a links, these aggregative re-
lations are amongst the most important sources of inference in the process
of text comprehension. These relations allow us to decompose complex con-
cepts to their components and define composite entities with other entities
as components. A composite concept is an aggregative of the components
that are linked to each other with the conceptual relations and constitute a
knowledge cluster. Plural denotation also is a kind of aggregation of indi-
viduals into a set.

There are several mereological relations that are usually considered as part-
whole relations. In fact logical and inferential properties of this relation
depend on the types of the concepts it links. For example, property inher-
itance from the part to the whole and from the whole to the part can be
very type dependent.
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Examples of different types of the mereological relations include:

� Component—Integral Object

� Portion—Mass

� Member—Collection

� Stuff—Object

� Place—Area

� Activity—Component

� ...

In any single case careful mereological analysis must be done in order to
determine the inferential properties and the exact type of mereology. Aggre-
gation is a basic technique for constructing canonical structures, definitions,
schemata, prototypes and other types of knowledge. However not all the
links between concepts should be considered as aggregative. Aggregation is
a connection between conceptual types that can be instantiated, i.e. entities
and their roles. In this sense attributive types are not aggregated but rather
attributed to a type.

5 Canonical structures

A canonical structure determines semantically valid type coexistence for a
given type. It shows selectional constrains for permissible type combinations
expected for the type and relations for the permissible combination. Usually
these structures are based on deep semantic case relations between types.
This allows to use the structures for checking semantic consistency of the
parser output and cut inconsistent branches of the parsing in dynamic.

Ancestors of the canonical structures are Tesniere’s dependency grammar,
Fillmore’s case grammar, Katz and Fodor’s semantic constraints and Aller-
ton’s valency theory. Canonical structures add further information about
the semantic roles that each argument plays. For example, thematic roles of
a subject and an object can play different semantic roles in the verb “like”
where subject is an experiencer and in the verb “use” where the subject is
an agent.
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Canonical structures are more general then binary features of simple case
frames. They can handle:

� complex interconnections between events by allowing them to be in-
terconnected in one canonical structure;

� disambiguate noun phrases or other stable patterns of word colloca-
tions;

� resolve long-distance dependencies;

� contain nested contexts for embedded propositions, time and modality.

Canonical structures are based on the type hierarchy and are inheritable
from a type to its subtype with possible specialization of the structure.

Not all the conceptual types have rich canonical structures. The richest
ones can be provided for events (verbs), attributives (adjectives) and role
types. Canonical structures for natural objects usually consist from a single
conceptual node. The following example shows the canonical structure for
the event admit in the hospital domain:

[ADMIT : every]-

−(agnt)− > [DOCTOR]

−(subj)− > [PATIENT : x]

−(to)− > [HOSPITAL]

−(from)− > [HOSPITAL]

−(reas)− > [HEALTH − PROBLEM ]

−(purp)− > [SITUATION : [PATIENT : ∗x] < −(ptnt) − [UNDERGO] − (subj)− > [HOSPITAL −

TREATMENT ]]

−(when)− > [DATE]

All types that are used in the canonical structure must be represented in the
type hierarchy. For example, both doctor and patient are role types of
the type human. Nominalized verbs inherit the canonical structures from
the verbs they are derived from. So the noun “admittance” will have the
same structure as above. Note also complex attachement of the purpose for
the structure. The variable *x represents the cross-reference between two
nodes, i.e. the same instance of the type patient.

However not only events can have canonical structures:
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[EASY : every]

< −(attr)− [OBJECT ] < −(ptnt)− [ACT : x]

< −(manr)− [ACT : ∗x]

This says that every concept of the type easy can be linked either to some
object by the attribute link or to some act by the manner link and the object
is a patient of the act. The variable *x represents the cross-reference between
the two nodes. This structure allows us to recognize ill-formed usages of the
words. For example: John is easy to do the homework - is wrong because
John stands in the agent relation instead of the valid patient one.

The canonical structure for “eager” could be given as

[EAGER : every]

< −(attr)− [ANIMATE] < −(agnt)− [ACT : x]

< −(manr)− [ACT : ∗x]

Using this canonical structure it is possible to recognize ill-formed usage of
”eager” in : The homework is eager for John to do. In this example John
doesn’t stand in the valid agent relation.

Prepositions can also be provided with canonical structures. For instance,
the preposition “with” can be mapped onto at least two different conceptual
relations:

1) [ACT ]− (instrument)− > [notANIMATE]

2) [OBJECT ]− (accompaniment)− > [OBJECT ]

A pronoun like “he” can be represented by means of a structure like the
following:

[MALE : #] ( # - means that a reference has to be resolved to the previously
introduced information).
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For objects we can provide following structure:

[OBJECT : every]

< −(arg)− [EV ENT ]

−(char)− > [ATTRIBUTE]

−(stat)− > [STATE]

This canonical structure allows one to recognize possible combinations of dif-
ferent types with the object type. (The relation “argument” is a supertype
for relations like agent, patient, etc.)

Canonical structures for role types usually include the framework the role
is defined in:

[DOCTOR : every]

< −(agnt)− [CURE]

−(rcpt)− > [ANIMATE]

−(ptnt)− > [ILLNESS]

This structure allows to bind the type doctor with types or subtypes of
cure, illness and animate objects when they are used in the same lexical
scope.

In resolving a compound noun phrase the canonical structures for every
word in it are matched for a maximal join. There can be four cases:

� A canonical structure is found only for the head noun. In this case
using type constraints the modifier is joined.

� A canonical structure was found only for the modifier. In this case the
modifier usually specifies the role for the head if the modifier is of the
object type. If the modifier is of the event or attributive type it has a
reach canonical structure that can absorb the head noun.

� A canonical structure was found for both. In this case using type
constraints both of the structures are tried for the maximal join.

� No canonical structures were found for either of them. This is the
most ambiguous case where no decision can be made about how to
join the concepts.
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The canonical structures sometimes intersect with type definitions but gen-
erally they are not as detailed and represent the implicit patterns of rela-
tionships necessary for semantically well-formed sentences. However people
often use metaphorical references and metonymy that violate semantic con-
straints represented in a canonical structure. There are several approaches
for resolving this kind of ambiguity. For instance, a “conceptual shift” al-
lows one to subsume an integral concept by one of its components. This
knowledge can be provided by definitions and schemata.

6 Definitions

Type definition is an Aristotelian approach to represent a conceptual type by
the set of properties that determine the necessary and sufficient conditions
for a concept to belong to the type—the concept’s essence. In this case, the
concept inherits all the properties from its supertypes and will typically also
have some unique properties that distinguish it from all other conceptual
types with the same supertypes. A definition must always be true because
if it were false for some object the object wouldn’t belong to that type.
Providing the definition of a type makes it possible to decompose the type
into primitive types and their properties.

The possible meanings of a word are obviously domain dependent. It may in
some cases be possible, however, to distinguish the most abstract meaning
and to organize the domain-dependent meanings as specialisations of the
main one. In this sense, the main meaning could be considered as a canonical
structure and the adjusted version can be considered as a subtype of the
main abstract type. During sentence processing the main meaning can be
used first and when further information is obtained, this meaning can be
replaced by its specialized subtype.

Here we will suggest a way of providing definitions in lambda calculus style,
where a type definition is an assertion that some type label is equivalent
to a particular lambda abstraction. It is important to note that conceptual
relations can be defined in the same way.

There are at least four ways for providing definitions for new types:

1. by assigning particular values to the features of the supertype. For
example:
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type [MAN : every x] is [HUMAN : ∗x]− (char)− > [SEX]− (val)− > [MALE]

This says that for x to be of the type man is to be of the type human
with fixed value of the characteristic sex and this value must be of
type male. Note that man was quantified universally and human
existentially; this allows one to say that every man is a human.

2. by providing aggregative differentia to the type. For example, the defi-
nition for the type hospital shows differentia through the aggregation
of the conceptual types medical treatment and patients with it:

type [HOSPITAL: every x] is

[BUSINESS−ESTABL : ∗x] < −(loc)− [MED−TREATMENT ]−(ptnt)− > [PATIENTS : {∗}]

This says that hospital is a business establishment where patients are
treated. Plural denotation for patients is represented by {*}.

3. by describing how it can be constructed from primitive types. Types
defined in this way may not have a supertype. For example:

[INTERVAL: every x]-

−(char)− > [POINT : y]

−(char)− > [POINT : z]

−(meas)− > [MEAS − UNIT ]− (val)− > [NUMBER : n]

[POINT : ∗z]− (arg − 1)− >< diff > −(rslt)− > [NUMBER : ∗n]

[POINT : ∗y]− (arg − 2)− >

This definition determines the aggregative construction with complex
relations inside it. This construction is called an interval. For the
interval definition we used two primitive types—point and number.
We can slightly adjust the definition by defining role types up-point
and low-point of type point and use them respectfully. Here also we
used an actor “diff” for measuring difference in measure units between
the points. Note that in this case the type interval does not have
any supertype.

4. by describing laws the type is to obey. For example, the type definition
for triangle is “three points that are not on the same line”. To represent
this we designed the constraint rule that checks values of intervals
between the points.
[TRIANGLE: every x]-
−(char)− > [POINT : y]
−(char)− > [POINT : d]
−(char)− > [POINT : z]
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[INTERVAL: i1]-
−(char)− > [POINT : ∗y]
−(char)− > [POINT : ∗d]
−(meas)− > [MEAS − UNIT ]− (val)− > [NUMBER : i1v]

[INTERVAL: i2]-
−(char)− > [POINT : ∗y]
−(char)− > [POINT : ∗z]
−(meas)− > [MEAS − UNIT ]− (val)− > [NUMBER : i2v]

[INTERVAL: i3]-
−(char)− > [POINT : ∗z]
−(char)− > [POINT : ∗d]
−(meas)− > [MEAS − UNIT ]− (val)− > [NUMBER : i3v]

not [[NUMBER : ∗i1v] − (arg − 1)− >< diff > −(rslt)− > [NUMBER] < −(=)− > [NUMBER :

∗i3v]]

[NUMBER : ∗i2v]− (arg − 2)−−

Role types are usually defined by specializing attributes to some framework.
For example, role type age is founded on the type time-interval which is
a specialization of the type interval.

type [TIME-INTERVAL: every x] is

[INTERV AL : ∗x]−

−(char)− > [LOW − POINT ]− (kind)− > [DATE : y]

−(char)− > [UP − PNT ]− (kind)− > [DATE : z]

−(meas)− > [TIME −MEAS − UNIT ]− (val)− > [TIME − V ALUE : n]

[DATE : ∗z]− (arg − 1)− >< minus > −(rslt)− > [DATE : ∗n]

[DATE : ∗y]− (arg − 2)−−

This specialization is represented by using time-dependent types for the
points and the measure units. The value is calculated by the actor “minus”
instead of more general actor “diff”.

Since type age is a role it is defined in respect with the appropriate situative
framework:

type [AGE : every x] is

[TIME − INTERV AL : ∗x]−

−(char)− > [LOW − POINT ]− (kind)− > [DATE] < −(when)− [BIRTH]− (ptnt)− > [ANIMATE]

−(char)− > [UP − PNT ]− (kind)− > [DATE − OF − SPCH]

−(meas)− > [MEAS − UNIT ]− (val)− > [TIME − V ALUE]

This says that the type age is a time interval where the low-point is the
date of birth of some animate creature and the up-point is a date of the
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utterance. Procedure of calculating the exact value of the age is inherited
from its supertype.

We can also define conceptual relation age(x,y) in terms of the conceptual
type age:

(age: every y)(z, v) is

[AGE : x]−(char)− > ...− > [ANIMATE : ∗z]−(link : ∗y)− > [TIME−V ALUE : ∗v] < −(val)−...−[AGE :

∗x]

This definition says that relation age is a link between elements of the same
instance of the concept age (reference x - *x) and these elements are the
animate object and the value of the age concept.

Both definitions for the concept age and the relation “age” allow one to
expand initial representation in terms of primitives used in the definitions
or contract the representation by hiding low-level primitives and using types
themselves.

Unfortunately in many cases it is not possible to provide a definition for a
type by stating the necessary and sufficient conditions for it. In this case
the type can be described by its schema.

7 Functional dependencies

Functional dependencies represent a connection among values of the ele-
ments of a type. These dependencies can be represented by a special type
of relation, viz. the actor. An actor represents some law that can be stated
either procedurally by attachment to an external procedure or declaratively
by table look-up. A specific feature of actors is that they are active and are
automatically activated when any of their functionally dependent values is
modified. They recalculate the other dependent values. An example of an
actor can be found in definition of the type age above.

The actor minus allows one to calculate a person’s age from his/her date of
birth and the date of utterance. It is also possible to provide actors that
calculate the second or the third of these values from the two others. This
usage of actors is called “if-added”: if some of the functionally dependent
value was modified, the actor activates itself.

Actors can also be used for finding the exact values for a concept charac-
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teristics. These are so-called skolem functions that can be defined whenever
some variable depends on a universally quantified concept. For example:

[DOCTOR : every] < −(benf)− [EARN ]− (ptnt)− > [SALARY ]− (val)− > [AMOUNT ]

This fact can be represented by skolem function:

[DOCTOR : every]− (arg)− >< DOC − SALARY > −(rslt)− > [AMOUNT ]

Function doc-salary retrieves the exact value of the salary for every par-
ticular doctor.

Skolem functions usually are defined if there are many individual facts or
when the knowledge base is connected with a database. In this case a skolem
function is just a query function for the database. This usage of actors is
known as “if-needed”, i.e. they are activated when we want to retrieve a
value that is functionally defined.

8 Schemata, prototypes and constraints

If a concept definition can be provided it represents a narrow view of the
concept by imposing obligatory conditions needed for making type distinc-
tions. However, a concept can also be defined by describing all the things
that are associated with. This is a schema for the concept. It represents a
semantic cluster associated with the concept and forms a broad view of it by
linking it with its accidental properties. While there is only one definition
for a type, the number of schemata for the type can be arbitrarily large,
even in the same domain, representing different points of view. The amount
of detail and the scope of the schema is highly dependent on the task.

For example, a possible schema for the type hospital could look as follows:

[HOSPITAL: every]-

−(part)− > [WARD : {∗}]

−(part)− > [DEPARTMENT : {∗}]

< −(loc)− [WORK]− (agnt)− > [STAFF ]

−(char)− > [ADDRESS]

−(char)− > [SPECIALISATION ]

−(char)− > [CHARGE − RATE]
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This schema represent the following facts:

Every hospital has wards. It consists of different departments. It is a place
where hospital staff works. It has an address, a specialisation and a charge-
rate.

Apart from the expansion of the concept of the type hospital into a com-
plex structure, this schema also allows to resolve metonymy when the type
hospital is used instead of its elements. For example:

This hospital is more expensive than another one.
(hospital is used instead of the concept charge rate)
The whole hospital voted against the new legislation.
(hospital is used instead of the concept staff).

The schema shows the task-dependent aspectual association of the type
hospital. Having another task we would represented the type hospital
by another set of associates or enlarged the current association. Usually if
both the definition and the schema are provided for a type, the definition is
included into the schema.

In case when there is no definition for a concept, the schema is supplied with
the supertype (if any) but the differentia is not provided at all. Instead of
the differentia there is a semantic cluster that can be applied to the family of
the concepts that constitute the type in accordance with the Wittgensteinian
principle of family resemblance.

For example, we cannot provide the differentia between the type work
and its supertype activity because we cannot find any property that is
obligatory for an activity to be of the type work. But we can define loose
association of properties of different activities we call work and associate
them into a schema.

WORK < ACTIVITY

[WORK]−

−(agnt)− > [ANIMATE]

−(loc)− [PLACE]

−(duration)− > [TIME − INTERV AL]

−(purp)− > []

−(rules)− > []

For every specific kind of work we will define the purpose, the rules, etc.
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Schemata allow us to describe a concept not in the terms of primitives but
rather in the terms of the entire framework where different concepts are
defined in the terms of each other. The following example defines the role
type patient in the framework of medicine:

type [PATIENT : every x] is

[MED − TREATMENT ] -

−(ptnt)− > [HUMAN : ∗x] − (char)− > [HEALTH − STATE] − (meas)− > [HL − UNITS] − (val)− >

[V AL : z]

−(agnt)− > [DOCTOR : y]

−(purp)− > [SITUATION :

[HUMAN : ∗x] − (char)− > [HEALTH − STATE] − (meas)− > [HL − UNITS] − (val)− > [V AL :

∗v] < −(>)− > [V AL : ∗z]

]

−(char)− > [AGE]

−(char)− [SEX]

This says that every patient is a human who underwent some medical treat-
ment with the purpose of increasing his or her health-state. The type doctor
can be defined in the same way in terms of the types med-treatment and
patient.

Events have more complex schemata that are called episodes. Episodes will
be explored in the following section.

Prototypes represent typical instances of conceptual types. Prototypes al-
low us to enrich the semantic representation with the background knowledge
about typical individuals of a given type by assigning default values to the
elements of the schema. These values may be or may not be true in every
particular case and can be modified in accordance with the particular case
by changing default values for explicitly mentioned ones.

For example, in the schema for the type work we can assign the default
values for the duration of the work, its purpose and its place :
[WORK]−
−(agnt)− > [ANIMATE : x]
−(loc)− > [PLACE]− default : − > (kind)− > [BUSINESS − ESTABL]

−(duration)− > [TIME − INTERV AL]− default : − > (meas)− > [HOUR]− (val)− > [8]

−(purp)− > default : − > [SITUATION : [ANIMATE : ∗x] < −(ptnt)− [EARN ]− (obj)− > [SALARY ]]
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To create a prototype for the type patient we can assign default values to
the health state, the age, the sex etc. For example most patients in certain
wards of a hospital may be over a particular age.

Constraints are general principles that must be true for the instances of
the type including its internal structure and external relationships. Like
definitions, constraints must always be true. But the reason is different. If
constraints were false this would mean some law was violated or the thing
could not be used for its normal purpose. For example, constraints can
determine mutually disjoint concepts that cannot co-exist in one schema,
or constraints can be applied for a number of the same links for a type.
Constraints represent the state of affairs in the particular world and can be
different for another possible world.

Constraints can be defined either in the schema itself or by if-then rules
the schema is supplemented with. We can add constraint for the schema of
the type patient that human age must be in range from 0 up to 110 years.
If this constraint is a general constraint for a human’s age then it is better
to encode it in the human-age schema directly:

IF [HUMAN − AGE]− (meas)− > [Y EARS]− (val)− > [NUMBER : x]

THEN [NUMBER : ∗x]− (>=)− > [0] and [NUMBER : ∗x]− (<)− > [150]

Every relation in a schema includes an implicit constraint for being the only
possible or allowing several of them. The general case is that when we want
to represent that there can be more than one relation of certain type we use
plural denotation. For example if we want to represent the fact that a car
cannot have less than three wheels we will write in a schema for the type
car:

[CAR: every]-

−(part)− > [WHEEL : {∗}]− (quant)− > [NUMBER]− (>)− > [2]

< −default : −(=)− > [4]

Another example of a constraint defines disjoint sets of men and women:

IF [HUMAN : ∗x]− (char)− > [SEX]− (val)− > [MALE]

THEN not[[HUMAN : ∗x]− (char)− > [SEX]− (val)− > [FEMALE]]

Frame languages usually are combined with logical languages for the con-
straints representation. We will use logical operators for augmenting con-
ceptual graph notation.
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9 Conceptual dependencies and episodes

Conceptual dependencies allow us to reconstruct implications and pre-
suppositions from explicitly mentioned information. They consist of two
parts: conceptual relations and production rules for the inference generation
based on these relations. When a new piece of information turns out to have
a conceptual dependent structure within the knowledge base, the produc-
tion rules are to be activated to perform the inference and to generate the
implied information. Since conceptual dependencies constitute the dynamic
part of a knowledge base they usually correspond to events.

An important difference between logical inferences and conceptual inferences
is that conceptual inferences are generated not on the demand of a user but
from the newly acquired information. Another difference is that concep-
tual dependencies are not logical relations and conceptual inferences do not
necessarily constitute logically valid deductions.

There are different types of conceptual inferences. An initial representation
of an event can be enriched with a knowledge structure that is presupposed
to be a purpose of this event. A result inference can be made whenever an
event is present and no information contradicts the inferred result. Infer-
ences can be made for simulating changes of states of the participants of the
event. A chain of the causally related events can be reconstructed having the
resulting situation. Different production rules are activated to reconstruct
the knowledge structures related by the same set of conceptual relations.

Production rules also include some control information about the circum-
stances under which the rule can be fired. The scope of the production
determines the kind of inferences the production can be used for. The con-
ditions impose constraints for the production to be used in every particular
case. The body of the production is the rule itself. It consists of the if-then
part and can be supplied with the else part. Actions on the production
realisation determine what should be done after the production rule was
fired. If the action is another production we have an algorithmic model. In
that sense conceptual dependencies can be represented as actors that corre-
spond to production rules. They are of the “if-added” type and are activated
whenever certain information is explicitly added to the knowledge base.

An episode is a kind of schema that is built around a number of events
for representing a temporal-causal chain of world state changes in time.
Apart from including schemata for its events an episode also has an intention
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associated with it, called the goal, and the chain of events that will lead
to the realisation of the goal, called the plan. There can be different plans
for the realisation of the same goal, and the same chain of events can be
used for the realisation of different goals. Episodes also include conceptual
dependencies between different parts of schemata for the events and provide
a basis for inferences that can be drawn from any point of the episode
for reconstructing the preceding part of the episode or the following part.
An important property of episodes is that they contain not all possible
conceptual dependencies that can be drawn but rather some restricted set
that is relevant to the episode’s intention.

A schema for an event includes actants that participate in the event, a script
or chain of subevents that are necessary or usually occur in the realisation
of the event, information about the event’s purpose, its resulting changes
and any other conceptually relevant knowledge. Here we will use the terms
episode and event schema interchangeably.

For example, an episode for an event like buy needs to comprise a schema
that can be invoked by passing actual instances to it. So this schema has a
header and a body:

[BUY : everyx](BUY ER : y, SELLER : s, THING : z, PAY MENT : p,DATE : d, LOCATION : l)

[TRANSACTION : ∗x] -

−(agnt)− > [BUY ER : ∗y],

−(ptnt)− > [THING : ∗z]

−(from)− > [SELLER : ∗s]

−(for)− > [PAY MENT : ∗p]

−(when)− > [DATE : ∗d]

−(where)− > [LOCATION : ∗l]

−(purp)− > [SITUATION : sit1 : [BUY ER : ∗y]− (expr)− > [OWN ]− (ptnt)− > [THING : ∗z]]

−(precondition)− > [SITUATION :

[BUY ER : ∗y]− (expr)− > [OWN ]− (ptnt)− > [PAY MENT : ∗p]

[SELLER : ∗s]− (expr)− > [OWN ]− (ptnt)− > [THING : ∗z]

[BUY ER : ∗y]− (expr)− > [WANT ]− (ptnt)− > [SITUATION : ∗sit1]

.............................

]

− < nes− script > − > [SITUATION : sit2

[SELLER : ∗s] < −(ptnt)− [GIV E : g1]− (agnt)− > [BUY ER : ∗y]

[PAY MENT : p] < −(obj)−

[SELLER : ∗s] < −(agnt)− [GIV E : g2]− (ptnt)− > [BUY ER : ∗y]
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[THING : ∗z] < −(obj)−

[GIV E : ∗g1] < −(elaborate)− > [GIV E : ∗g2]

]

− < plaus− script > −default :> [SITUATION :

[THING : ∗z] < −(ptnt)−[CHOOSE : ch]−(agnt)− > [BUY ER : ∗y]

[SELLER : ∗s] < −(ptnt)− [ASK : a]− (agnt)− > [BUY ER : ∗y]

[PAY MENT : ∗p] < −(about)−

.......................................................

[CHOOSE : ∗ch] − (then)− > [ASK : ∗a] − ......− > [SITUATION :

∗sit2]

]

− < rslt > −default : − > [SITUATION :

[BUY ER : ∗y]− (expr)− > [OWN ]− (ptnt)− > [THING : ∗z]

[SELLER : ∗s]− (expr)− > [OWN ]− (ptnt)− > [PAY MENT : ∗p]

not[[SELLER : ∗s]− (expr)− > [OWN ]− (ptnt)− > [THING : ∗z]]

not[[BUY ER : ∗y]− (expr)− > [OWN ]− (ptnt)− > [PAY MENT : ∗p]

]

− < create > − > [SELL](BUY ER : ∗y, SELLER : ∗s, THING : ∗z, PAY MENT : ∗p,DATE : ∗d, LOCATION :

∗l)

The event sell is a different event. Buyer and seller have different purposes
and they may also have different attitudes towards their respective actions.
However the schema for sell also has a lot in common with the schema for
buy. To represent the fact that every buying event is necessary a selling
event we use the actor < create > that creates an instance of the selling
event with the same participants that was passed to it as arguments.

The actors “result”, “necessary script”, “plausible script”, “create”, etc.,
perform a dynamic creation of corresponding knowledge structures. How-
ever, each of the actors has its own features for using. For example, the
actors “create” and “necessary script” are fired without checking any con-
ditions. The actor “result” on the other hand generates different resulting
situations in accordance with explicitly mentioned information. A default
resulting state is generated if there is no explicit information about other
possible result states. The production rule that corresponds to the “result”
actor can look in the following way:
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Name: BUY-SELL result

Scope : BUY event; SELL event

Condition: apply if there is no explicitly mentioned result

Body:

IF check: precondition-1 = TRUE OR precondition-1 = UNKNOWN

......................................

THEN apply: default result

ELSE ..............

Post actions: none

This production is to be applied whenever instances of the buying or the
selling events are added to the discourse. Upon firing the rule the produc-
tion checks if there is no explicitly mentioned result. The rule itself checks
the preconditions and other available information and activates the corre-
sponding branch.

To the buy and the sell schemata we can also add actors and productions
for reconstructing the preconditions for these events. This is presupposed
information which is usually not mentioned in the text.

The essential advantage of episodes over the static representation of events
is that episodes allow us to produce context sensitive conceptual inferences.
Moreover, there is a particular class of verbs—causative-inchoative verbs—
that refer exactly to the resulting state without directly mentioning the
caused event. Such verbs like “damage”, “cure”, etc., represent the final
stage of some event or chain of events. In this case the resulting stage is
predefined but the script of the exact chain of events that caused the state is
unknown and can be only retrieved from the text. Careful analysis is needed
for every verb in accordance with which parts of the episode are necessary
presupposed which are plausible and which inferences can be generated.

The episode hospitalisation is the central point in the domain of patient
discharge summaries (provided by an Irish hospital group for application of
our results). This episode defines the framework for arranging the infor-
mation from the medical reports into a coherent, logically and conceptually
related cluster. This episode includes the stable chain of events (script) that
necessarily occurs: admittance, cure, discharge arranged in temporal
order. The goal of the episode is to improve patient’s health state. Each
of the events has conceptual consequences that are necessary for the reali-
sation of the next event. Production rules check these necessary conditions
and perform the conceptual movement in the chain. They also determine
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what is to happen if a particular action fails. Each of the events can be
decomposed for sub-goals and further sub-plans.

In certain cases an even deeper understanding can be provided by incorpo-
rating the knowledge about the agents’ motivations and emotions into an
episode. This knowledge allows one to reconstruct an account of why the
goal has arisen and how it relates to the emotional state of the actor and
what the motivation was of the actor to seek the fulfillment of the goal.
There are different theories for simulating human emotions. Some of them,
like Plot Units and the theory of affect (Dyer 1989 and Lehnert 1989), were
implemented in natural language understanding systems and showed (or
simulated) a rather deep level of comprehension. It also makes the system
more robust in the face of incomplete or even ungrammatical input.

An episode is a structured way of representing corresponding activities and
can be freely combined with other episodes into a plan for a more compre-
hensive episode. Some episodes don’t have any chains of events for their
realisation at the defined level of abstraction. Such episodes we will call ele-
mentary. However, any elementary episode can be provided with its script at
another level of abstraction. This feature highlights the difference between
the episodes on the one hand and the script and MOP theories (Schank and
Abelson 1977, Schank 1982) on the other. Episodes don’t require a set of
global primitives for the concept to be decomposed but rather are adjusted
to a particular level of the granularity required by the task.
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Part 2
Elicitation: Typology for Information Contents

Responsible: Annelise Bech, Costanza Navarretta
CST

Copenhagen
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10 A working method for knowledge elicitation

The process of knowledge elicitation concerns the extraction of relevant in-
formation from the texts. In this part of the document we will determine
which information presupposed in the texts is relevant in an NLU system.

The nine-step method which we adopted at the end of WP 1 (Bech et.al.
1993) presupposes that the tacitus commonsense knowledge base described
in (Hobbs 1986, 1988) is available. Thus it does only give guidelines about
how to organize and insert new information in this existing base (steps 5–9
of the method). Because we want to define a general method and because
we cannot get the tacitus commonsense knowledge base, we have redefined
the steps of organizing a knowledge base (Part 1 of this report). We have
also combined the first four steps of the nine-step method with the original
Jerry Hobbs’ three–step strategy (Hobbs 1984) that gives good guidelines
for a first analysis of the texts and a first division into subdomains (clusters)
of the background knowledge presupposed by the texts.

The resulting working method for knowledge elicitation from a text corpus
which we have adopted is the following:

� Make an extensive list of the content words in the text corpus to be
processed and an extensive list of general relevant facts about the text
corpus and about the content words in it.

� Collect morphologically related words.

� Divide the resulting groups of morphologically related words into sub-
domains (”clusters”).

� Give a first organization of the knowledge in each subdomain.

Next for each content word (or for each group of morphologically related
words) do:

� Look for all occurences of the word in the text corpus to see the con-
texts in which the word is used. When necessary, look at previous or
following sentences to resolve anaphora.

� Reduce the citations to their predicate argument relations. Examine
the contexts and ask what facts about the word are required to justify
each of the occurrences of the word.
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� Make a preliminary division of these predicate-argument relations into
heaps, according to a first analysis of which predicates should go to-
gether. This first analysis is based i.a. on the knowledge enterer’s lin-
guistic knowledge and on his knowledge about the text corpus. Some
patterns must be split up because more facts are presupposed in the
citation.

� Give an abstract characterization of the facts about the word that
justify each of the heaps. This is a matter of making explicit the first
analysis that underlay the classification into categories in the previous
step, in fact this and the previous step will often be done in tandem.
Recognizing a more abstract characterization may lead one to join two
heaps, and failure to find a single abstract characterization may lead
one to split a heap.

11 Types of information presupposed by texts

In this section we will determine which kinds of background knowledge are
necessary to understand texts. The strategy adopted to identify the infor-
mation to be extracted from texts has been to apply the working method for
knowledge elicitation described in the previous section to small text corpora
belonging to different domains and annotate the background knowledge that
is required by the texts. Some examples of the results of this analysis can
be found in section 12.

Background knowledge comprises linguistic and extra-linguistic (world) knowl-
edge. The discussion whether linguistic and extra-linguistic knowledge should
be handled in distinct ways is still not resolved but the field of lexical se-
mantics is actually having a revival. Because linguistic and extra-linguistic
knowledge are strictly interrelated, we will not try to find a clear-cut sep-
aration line for the two kinds of information but we will, when possible,
define the linguistic phenomena that indicate the presence of presupposed
background knowledge. Then it will be possible to investigate regularities
and dependencies between the two kinds of information because most of
the facts presupposed in the texts are exactly the facts that are necessary
to resolve/disambiguate linguistic phenomena such as anaphora, compound
nouns, metonymies etc.
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Results from lexical semantics that systematize regularities in the lexical
and compositional behaviour of words are of course of big interest and can
be ”(re)-used”.

The working typology we present in this section is not exhaustive, but it
gives a pretty good indication of the kinds of knowledge presupposed in
texts. To make a more complete list more text corpora should have been
analysed (possibly though the list would be still incomplete).

� General knowledge about the type of corpus to be analysed is relevant
because it clarifies many linguistic and pragmatic features of the texts.
This type of information is relevant when determining the important
facts about the text corpus in the first phases of the elicitation process.
The elements about the actual text corpus that should be taken into
consideration are at least

– the genre

– the style

– the medium

Particular attention must be given to the type of language used: lin-
guistic conventions of the genre, formal/informal texts, discourse strat-
egy, informational density, length and complexity of the sentences,
types of subordinate clauses, temporal and causal adverbials etc.

� Knowledge about the communicative situation and the communicative
competence (the addressor and the addressee of the texts and their
qualifications, the purpose of the communication, the extent of shared
knowledge. . . ) is relevant to determine the granularity of the domain
(degree of technicality) and to establish many facts presupposed by
the texts (e.g. the purpose of the texts).

� Knowledge about the communicative situation together with knowl-
edge about the task the system should accomplish, is also important
to decide the granularity of the system.

� Both overt and covert connections among sentences must be discov-
ered.

� Relations (temporal and causal) among sentences must be explicated.
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Together with the above general points there are recurrent linguistic phe-
nomena that need background knowledge to be disambiguated. The fre-
quency of the kind of these phenomena vary from text type to text type.
Some phenomena are more common than others, e.g. we hardly expect
metaphors in an owner’s manual or in a patient discharge letter, while we
can expect noun compounds in nearly all texts. The linguistic phenomena
to be taken in consideration are at least the following:

� compound nouns1

� pronominal anaphora

� definite reference

� attachment ambiguity (prepositional phrases)

� metonymy

� ellipses

� metaphors

� belief reports

Common to all domains (but with different granularity) are knowledge about
scale, physical objects, space, change, causality, time, functionality, etc. that
are exactly the ”clusters of commonsense knowledge” identified by most
researchers in the field of knowledge engineering for both NLP systems and
expert systems (i.a. Hayes 1979, Herzog & Rollinger eds. 1991, Hobbs &
Moore eds. 1985, Lenat & Feigenbaum 1987).

12 Examples of the analysis of three text corpora

Among the text corpora available at our sites we have selected three to be
used as working material in WP 2 according to the following main criteria:

1Sometimes compound nouns must be considered as being a single item and then
cannot be disambiguated. In many cases though it is necessary to use some background
knowledge to disambiguate the relation among the constituents. Different interesting
approaches have been suggested to analyse compound nouns (e.g. Downing 1977, Levi
1978, Anick and Pustejovsky 1990).
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the text corpora should belong to different domains, they should have dif-
ferent degrees of technicality, so that it would be possible to compare them
in the light of the present issue, and for practical purposes they should be
small.

The first text corpus selected belongs to the motor car mechanical domain. It
contains descriptions of different topics (viz. towing, wheel changing, engine
oil, coolant, fan belt) from owner’s manuals of seven cars from different firms.
It has been collected at CST for a project on knowledge based machine
translation (English, Danish).

The second text corpus belongs to the medical domain and consists of sixteen
PDSs, i.e. Patient Discharge Summaries. It is a subset of a corpus used by
HCRC - LTG in a project whose aim is to automatically extract information
from PDSs written in different European countries.

The third text corpus is about terrorist attacks. It has been selected for
our project from the set of test texts for MUC3. Our text corpus concerns
only bomb attacks and contains texts from written sources, i.e. the texts
transcripted from radio and TV broadcasts have not been included.

12.1 Characteristics of the three text corpora

The three corpora are quite different in style, technicality and complexity (by
complexity in this context we mean the amount and the kind of information
which is presupposed by the texts).

The motor car mechanical and the PDS text corpus are less complex than the
terrorist corpus because they presuppose more specific background knowl-
edge. The motor car mechanical and the PDS text corpus also belong to
more delimited subject areas which makes it ’easier’ to delimit the domain
specific knowledge the texts presuppose. In the terrorist corpus common-
sense (general world) knowledge and domain specific knowledge have no
clear-cut boundaries.

The type of the motor car mechanical text corpus is owner’s manuals. The
readers are people with a driving licence and hence presumably have some
layman’s knowledge of the functionality of cars; the senders are experts in
the domain. The information is therefore explicated as much as possible.

The discourse strategy for the text corpus is a ’step by step’ one (Quirk et
al. 1989), i.e. each fact follows the other in a linear way. The sentences
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are generally short and contain instructions expressed with imperatives (do
this, don’t do that).

Pictures supporting the information contained in the instructions were orig-
inally attached to the text. This extra information is lost in the actual
”text-only” version.

The PDSs are written by doctors for doctors. The type is ”discharge sum-
mary letters”. The style is formal and the letters are composed in a nearly
schematic way. Most sentences are short. Longer sentences contain lists
(medicine, treatments etc.). The connection between the different sentences
is not as linear as in the motor car mechanical corpus and the causal con-
nections between the sentences are not always obvious.

In the PDS corpus both the sender and the addressee are experts. A lot of
the implicit and/or background knowledge in the texts is therefore specific
to the medical domain and, in the present case, mostly to the heart disease
domain.

The terrorist corpus is much more complex. It contains articles from news-
papers and news agencies’ bulletins etc. The senders are journalists, the ad-
dressees are both journalists (news agencies’ bullettins) and ordinary people
who read newspapers. The style of the corpus is not homogenous and some
of the texts are translations from other languages.

The texts contain information about bomb attacks that took place in Latin
America over a period of more than a year. A lot of complex world knowl-
edge (economics, international and local politics, social relations etc.) is
presupposed.

To understand the texts in the corpus it is necessary to know the political
situation in the area, to deal with beliefs and to have knowledge about the
original source of the news (a local radio that sympathizes with a particular
terrorist group; an international news agency; a newspaper owned by the
government . . . ).
Take as an illustrative example

THE MANUEL RODRIGUEZ PATRIOTIC FRONT (FPMR),
WHICH THE PINOCHET REGIME CONSIDERS TO BE THE
COMMUNIST PARTY’S ARMED BRANCH, ANNOUNCED
FOLLOWING THE U.S. INVASION OF PANAMA THAT. . .
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13 The analysis of some texts from the three cor-
pora

In the following we will only describe the results of the analysis of one text
from each corpus. In describing these results we distinguish between knowl-
edge belonging to different domains (viz. domain independent (common-
sense knowledge), domain specific, e.g. medical domain, motor car mechan-
ical domain). How many domains can be distinguished in a corpus depends
on the granularity one applies in the analysis.

In this paper we adopt a very coarse grain (the most conspicuous) because
the relevant matter here is to define which types of knowledge are useful to
understand a text and not to give a complete list of elements for each type.

We will also relate words to different clusters of knowledge or ”core theories”2.

13.1 Analysis of one PDS

The PDS we will discuss in the following is:

PATIENT NAME : JOHN AITCHROM

ADDRESS : 71 PARK DRIVE SEX : M
OLDCASTLE DOB : 20.02.1947

ADMITTED :28.03.1991 DISCHARGED :30.03.1991

CONSULTANT: Prof L.T.G. Wilson

MAIN DIAGNOSIS : G340.... Coronary atherosclerosis

GP : DR L.T.G. AWESOME
31 ROADSIDE
OLDCASTLE

2”Core theories” have been defined in (Hobbs et al. 1987) as the basic ontologies
and structures of various commonsense domains that figure in virtually every domain of
discourse. Examples of these domains are scalar notions, granularity, time, space, material,
physical objects, causality, functionality, force, and shape.
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Dear Dr Simpson,

Mr Aitchrom was admitted on 28th March 1991 for cardiac
catheterisation. A report of this is enclosed.

With double vessel disease and good left ventricular function,
the prognosis with medical and surgical treatment is similar and
a decision for surgery would be largely on the basis of symptoms.

On full therapy, Mr Aitchrom is having much less angina.

We plan to have a thallium study and I will review him when
this is available.

He should continue on his current drugs and he was discharged
on 30 March 1991.

The content words (and the abbreviations) in the text have been divided
into the following groups:

� Domain independent knowledge: available, basis, continue, cur-
rent, dear, decide, decision, DOB (date of birth), dates (28.03.1991
etc.), double, enclose, full, function, good, largely, left, less, letter,
main, mr, much, name, plan, report, review, secondary, sex, similar,
study.

� Domain specific knowledge (medical domain): admit, angina, athero-
sclerosis, cardiac, catheterisation, consultant, coronary, diagnosis, dis-
charge, disease, dr, drug, hospital, G.P., medical, patient, prognosis,
surgery/surgical, symptom, thallium, therapy, treatment, ventricular,
vessel.

To understand the text it is necessary, inter alia,

� to disambiguate compound nouns as discharge letter, vessel disease,
thallium study. . .

� to resolve pronominal anaphora: report of this is enclosed, review
him when this is available. . .

� to resolve definite reference: . . . the prognosis with. . .

� to resolve the attachment ambiguity: With double vessel disease
and good left ventricular function, the prognosis. . . .
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The words which are domain independent can be divided into the following
subdomains (clusters):

full —> set

28. . . —> numbers

basis —> causality

date
DOB
continue
current —> time and change

available
function —> functionality

double —> measurement

good
less
much
similar
largely
main
secundary —> scale

decision —> plan, causality, change

admit
discharge —> change, movement

left —> space, orientation.

We have also divided the domain specific words in following clusters:

angina
atheriosclerosis
disease —> disease (process)

catheterisation
surgery/surgical
medical
treatment —> treatment (process)

cardiac
coronary
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ventricular
vessel —> patient’s body-parts (related-to body-parts)

hospital —> space

drug —> material

consultant
doctor
G.P.
hospital
diagnosis
patient
prognosis —> health-organisation, goal-directed systems.

The following facts which are also presupposed by the text are also necessary
to understand the texts:

� Hospitals are places where people with a disease (patients) are treated
and/or cured.

� Doctors are persons that treat (surgically/medically) patients inside
and/or outside hospitals.

� A disease is a process that make some parts of/the body malfunction.
It can cause pain.

� On the basis of different signs doctors can decide a treatment and
make a prognosis for a disease.

� Doctors at hospitals write discharge letters to inform doctors outside
the hospital (or at other hospitals) about the situation of a patient
when he/she is dismissed.

13.2 Analysis of a text from the motor car mechanical do-
main

Below is the chosen example from the motor car mechanical text corpus:

Never tow an automatic transmission model with the rear wheels
raised (with the front wheels on the ground) as this may cause
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serious and expensive damage to the transmission. If it is neces-
sary to tow the vehicle with the rear wheels raised, always use a
towing dolly under the front wheels.

The words in the text can be divided into the following groups:

� Domain independent knowledge: always, automatic, cause, dam-
age, expensive, front, ground, may, necessary, never raise, rear, serious,
under, use, with.

� Domain specific knowledge: dolly, model, tow, transmission, vehi-
cle, wheel.

The words in the text can be divided into following subdomains:

under
front
rear —> orientation

ground —> space, orientation

tow
raise —> space, movement, causality

necessary
cause —> causality

always never —> time

with —> instrumentality, causality

expensive —> scale, economics

damage —> causality, goal-directed systems, functionality

serious —> scales

vehicle
transmission
wheels
dolly
model —> artifacts, goal-directed-systems

automatic —> functionality.
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To understand the text it is necessary to:

� Disambiguate compound nouns: transmission model. . .

� Resolve pronominal anaphora: this may cause. . .

� Resolve definite reference: Never tow an automatic transmission
model with the rear wheels raised (here a so called bridging inference),
the transmission. . .

� Resolve attachment ambiguities: tow an automatic transmission
model with the rear wheels raised. . .

The facts that are presupposed in the text are, inter alia:

� General knowledge about cars (e.g. they have four wheels, a transmis-
sion etc.).

� The texts contain instructions about how to use a vehicle in a correct
manner, because incorrect procedures can damage it.

� There is a connection between the front wheels and the transmission
in automatic car models.

� When towing vehicles, a dolly is often used so that the vehicle’s wheels
are off the ground (cf. the connection wheels-transmission).

13.3 Analysis ofa text from the terrorist corpus

We will describe the analysis of following text from the terrorist corpus:

MEDELLIN, 27 AUG 89 (AFP) – [TEXT]
TODAY, MEDELLIN, COLOMBIA’ S SECOND LARGEST
CITY, ONCE AGAIN EXPERIENCED A TERRORIST ESCA-
LATION WHEN SEVEN BANK BRANCH OFFICES WERE
SHAKEN BY EXPLOSIVES THAT CAUSED HEAVY DAM-
AGE BUT NO FATALITIES, ACCORDING TO RADIO RE-
PORTS BROADCAST IN BOGOTA (500 KM TO THE
SOUTH).
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THE TARGETS OF THE ATTACKS WERE THE BANCO
CAFETERO BRANCHES AND ITS OFFICES IN MEDEL-
LIN’S MIDDLE, WESTERN, AND SOUTHEASTERN AREAS.

The words in the text can roughly be classified in the three groups mentioned
below:

Domain independent knowledge: according, again, area, banco/bank,
Bogota, branch, broadcast, by, cause, city, Colombia, damage, dates
(27 august 1989), escalation, experience, fatalities, heavy, in, its, km,
largest, Medellin, middle, of, office, once, radio, report, second, seven,
shook, southeastern, to, today, western, when.

Domain specific knowledge (terrorist domain): attack, explosive, tar-
get, terrorist.

We have divided the words in the target text into the following domains:

27 august 1989
when
again
once
today —> time, change

cause —> causality, change

500 —> set, scale, numbers

escalation
largest
heavy —> scale

by —> causality, instrumentality

in —> space

western
southeastern
middle
area —> space, orientation

km —> space, scale
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city
bank (banco)
branch
office
radio —> space, organization, goal-directed systems

bank (banco) —> economy

branch, office —> subset

report
broadcast —> communication, plan&goal

shook —> change, movement, causality

second
seven —> set, numbers

to —> movement, change

target —> plan, goal-directed system, space

terrorist —> goal-directed system

attack —> change, movement, plan

explosive —> physical object, material, plan

according to —> belief

To understand the text it is necessary, inter alia:

� To disambiguate compound nouns: bank branch offices, radio re-
ports broadcast, Banco Cafetero branches. . .

� To resolve pronominal anaphora: the Banco Cafetero Branches and
its offices. . .

� To resolve definite reference: the targets of the attacks (where at-
tacks refers to explosives and terrorist escalation).

� To deal with belief reports: according to. . .

For understanding the text it is inter alia necessary to have access to the
following presupposed facts:

� terrorists use violence to achieve political results;
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� explosives cause damage to things and can injure peoples;

� damage can have different degrees (damage to properties, damage to
the environment, damage to human life);

� banks are economical institutions;

� Banco is the Spanish word for bank;

� news from a radio broadcast can be incomplete.

13.4 Conclusion

Applying the method for knowledge elicitation to the three corpora we have
found out that the main types of background knowledge in a somehow ho-
mogenous text corpus can in many case be ’discovered’ by applying the
method to a subset of the source text corpus. After which criteria an ”ho-
mogeneous” subcorpus should be composed will be inquired in the second
report for this phase of the project Criteria of possible ”support” material.

The elicitation method we have applied in this phase of the project is very
general. The definition of strategies, techniques and heuristics aimed to fa-
cilitate the extraction of the different semantic types of knowledge described
in the first part of this document is one of the issues to be investigated in
the next phases of the project.
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