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EPR correlations exist and can be observed independently of any a priori given frame of
reference. We can even construct a frame of reference that is based on these correlations. This
observation-based frame of reference is equivalent to the customary a priori given frame of
reference of the laboratory when describing real EPR experiments.

J.S. Bell has argued that local hidden parameter theories that reproduce the predictions of
Quantum Mechanics cannot exist, but the counterfactual reasoning leading to Bell's conclusion is
physically meaningless if the frame of reference that is based on EPR-correlations is accepted as
the backdrop for EPR-type experiments.

The refutal of Bell's proof opens up for the construction of a viable hidden parameter theory. A
model of a spin ħ/2 particle in terms of a non-flat metric of space-time is shown to be able to
reproduce the predictions of quantum mechanics in the Bohm-Aharonov version of the EPR
experiment, without introducing non-locality.

PACS numbers: 03.65.Bz, 02.40.Ky, 04.20.Gz 

I. HIDDEN VARIABLES

A. The Einstein, Podolsky and Rosen Gedanken
experiment

Albert Einstein was convinced that quantum mechanics
is an incomplete theory, which was a position opposite to
that of Niels Bohr. Their discussion culminated in a paper
by Einstein, Podolsky and Rosen (EPR) [1], in which they
showed how one can measure two non-commuting physical
quantities to any degree of accuracy. Bohr's reply [2] was
soon to follow. The issue is still debated.

The set-up of the EPR experiment consists of two
observation posts doing measurements of momentum or
position on the flown-apart members of particle pairs that
have been carefully prepared to have no net momentum
relative to the laboratory frame.

The particles in a pair can be regarded as exact copies of
each other, apart from being mirrored: if the same
measurement is performed at both observation posts, then
the outcomes are each other’s exact opposites. Given a
quantity to be determined for both particles, we can suffice
with doing only one of the measurements.

EPR’s idea was that two non-commuting quantities, such
as momentum and position, can be determined by
measuring one of the quantities directly and by deriving the
value of the other quantity from the outcome of the
measurement of that quantity on the other particle in the
pair.

Bohm and Aharonov [3] devised a version of the EPR
Gedanken experiment that has been the focus of much
theoretical and experimental work. In their experiment, the
measurements are done on pairs of spin ħ/2 particles that

are prepared in the singlet state, which is a quantum state
that does not hold any information about the directions of
the spins of the individual particles.

In the Bohm-Aharonov experiment the particles fly apart
toward two widely separated observation posts, where they
traverse the gaps of Stern-Gerlach magnets. During such a
traversal, due to a coupling between the particle’s intrinsic
spin and the longitudinal gradient of the magnetic field, the
particle’s path is bent either away from or toward the pole
where the magnetic field is strongest. The particle finally
hits one of two detectors, depending on which route it took.
One of the detectors only records particles that had spin up

, while the other only records those with spin down ,
“up” and “down” being defined relative to the Stern-
Gerlach magnet. The detectors are fixed to their respective
Stern-Gerlach magnets, so that the directions that are “up”
and “down” rotate together with the freely orientable Stern-
Gerlach magnets.

(↑) (↓)

B. Can counterfactual considerations complete the
description of physical reality?

Employing propositions of the type that EPR used to
show that quantum mechanics can not be complete, J.S.
Bell [4] showed that any theory that reproduces the
predictions made by quantum mechanics and yet is more
complete than quantum mechanics necessarily postulates
instantaneous action at a distance. In other words, the kind
of theories that Einstein envisaged as successors to
quantum mechanics would be difficult to reconcile with
relativity theory, which champions locality and does not
allow any signal to travel faster than light.

Bell’s proof is dependent on counterfactual propositions.
A counterfactual proposition assigns a determinate value to
a quantity that could have been directly observable, but is
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not, typically because another, incommensurable quantity
is measured. The experimental basis - if you can call it that
- for this assignment is the measurement of the same
quantity on the far away twin particle. The reasoning is that
the measurement on the twin is as good as the measurement
on the particle itself, because the inner states of the
particles must be fully correlated in order to preserve the
isotropy of the quantum state of the pair.

To give teeth to such a counterfactual proposition, not
only do we have to ascribe reality to the result of the
measurement, but also to the angle between the
counterfactual orientation of the instrument and the (factual
or counterfactual) orientation of the other instrument.

Let us hold EPR’s and Bell’s counterfactual reasoning
against the background of Riemannian geometry, or, more
specifically, general relativity. Only geometric relations,
such as angles and distances, between things that are local
to each other in space and in time bear physical meaning
according to the general relativity theory. Geometric
relations over long spatio-temporal distances, such as the
angle between the directions of observation in the Bohm-
Aharonov experiment, are a different matter. 

If it is not assumed that space-time is flat, then only an
operational definition can lend physical meaning to these
relations. In general, different operational definitions can
give physical meaning to the same relation, but in theory
the methods need not agree on the outcomes of the
measurements. This is clearly exemplified by the multitude
of theory laden operational definitions for distances on
cosmological scales.

What then is the angel between a factual set-up of a
Stern-Gerlach magnet at one of the two observation posts
and a counterfactual set-up of the Stern-Gerlach magnet at
the other observation post? Of course, because one of the
two set-ups is not effectuated, there is no direct means of
measuring this angle. We can only base our answer on
interpolation, together with a smoothness assumption that
coordinates the interpolated but counterfactual observation
with real ones. Normally, interpolation depends on a
smoothness assumption that is innocuous, because the
missing, interpolated values may some day be replaced by
outcomes of real experiments. In such cases, interpolation
is a falsifiable theory and therefore acceptable. In Bell’s
proof, the interpolation is not falsifiable, because the
measuring apparatus is sitting itself in the way. That
weakens Bell’s conclusion. We can only accept Bell’s
proof if we assume that the space time backdrop is smooth
and constant enough to allow us to interpolate between
measurements, but this assumption excludes from
consideration any theory that denies that space-time is like
that.

C. The Bohm-Aharonov experiment without flat-space
preconception.

Bell's proof hinges on the postulate that space time is
flat, but this postulate may be false. This is the main theme
of this paper and we will dwell on it a little more, because
understanding the epistemological restrictions that
relativity imposes is essential for appreciating the approach

towards hidden variables that is presented later.
First think of the Bohm-Aharonov experiment as a set-up

consisting of two observation posts connected by the floor
of a laboratory or something else that we may regard as
rigid. Each observation post consists of a Stern-Gerlach
magnet that is freely orientable in its mounting into any of
a large number of directions, or lines of observation. Each
such orientation is identifiable, for example by reading off
the color of a mark on the mounting that a pointer aligned
with the axis of the magnet is pointing at. There may be
many differently colored marks, each identifying a unique
orientation of the magnet. If one wishes so one can define
the mountings of the instrument to include far away stars,
which then can be used as the marks for that post. We also
have calibrated scales on the mounting so that we have the
option to read off the angular coordinates of the direction
vector of the Stern-Gerlach magnet. A post's electron
detectors are fixed to the Stern-Gerlach magnet inside that
post. The rigid connection between the two posts (or rather:
between the mountings), together with conventional means
of doing geodesy (measuring rods, light beams,
gyroscopes) provides us with a reference frame in which
both measuring instruments have definite positions and
orientations. Even counterfactual orientations can be
tracked, because the rigid frame "fixes" all thinkable
orientations. This is the normal, "robust" experimental
context of Bell's proof.

Now remove all unnecessary equipment: the measuring
rods, light beams, gyroscopes, scales and even the
laboratory floor. Would that make any difference? We did
not do away the mountings of the instruments and are
therefore still able to identify each orientation by reading
off the color of the mark that a Stern-Gerlach magnet is
pointing at. Can we reconstruct the experiment with this
basic equipment?

From each pair of measurements we obtain a data-triplet:
the color of the mark that the left magnet was pointing at,
idem for the right magnet and finally the outcome of the
detectors, which arbitrarily may be defined to be "S" (for
"same") if both "up" or both "down" detectors were hit and
"N" (for "not same") if one "up" and one "down" detector
was triggered. Our logbook will have just three columns,
the experiment has only three degrees of freedom.

After doing a long series of such experiments, with the
magnets having been oriented in all possible combinations
of directions many times, the log of outcomes will enable
us to assign statistical probabilities for measuring the same
spin component to each pair of orientations of the Stern-
Gerlach magnets. We might for example observe that
"yellow" left and "blue" right have a 73% chance of
resulting in the value "S". There is a conceptual difference
with the full blown experimental set-up, though: we have
no prior knowledge of the geometric relations between the
Stern-Gerlach magnets; we can only pairwise statistically
relate marks on the mountings with each other. We do not
even know the angles between two different orientations of
the same magnet!

Now we will try to organize the three columns of
obtained data by mapping the colored marks that identify
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directions of observations onto points on a sphere in such a
way that exactly one point is assigned to each mark. This
mapping must map the marks on both surroundings,
however far separated from each other, onto a single sphere
that does not exist physically, but only as a mathematical
tool. Underlying the mapping is the working hypothesis
that there is a functional relation between the statistical
probability to measure the same component and the angle,
as measured on this sphere, between the orientations of the
Stern-Gerlach magnets. We can start to assume a linear
dependency: a 100% probability and a 0 % probability
correspond to angles of  and of  between the
magnets, a 10% probability would correspond to , and
so on. Such a relation would be appropriate if the spinning
particles were macroscopic objects with observationally
well defined "north" and "south" hemispheres. However, if
we apply this relation to our data then the obtained angles
force us to map the same mark onto several points, which is
not what we wanted.

180° 0°
18°

Eventually, we would find that

P (S) = probability to measure same value =

= sin2 (angle between orientations

2 ) (1a)

establishes a 1-1 mapping, as does its mirroring twin

P (S) = probability to measure same value =

= cos2 (angle between orientations

2 ) . (1b)

Now, not only would we have learned how to define angles
between the two measuring instruments when directed
towards two given colored marks, we would also have a
consistent way to figure out the angles between the colored
marks at one and the same post. That means that we would
have regained the spherical geometry relations that we did
not assume as given a priori. That, in turn, would enable us
to deliver exactly the same kind of experimental report as
someone who had a rigid frame to connect the measuring
posts and rods, light beams, gyroscopes and scales to
measure the geometry. We could also verify the contingent
fact that this statistical way of determining geometric
relations is perfectly consistent with other, more
conventional means, such as with the help of rods, light
beams, gyroscopes and scales. But of course, as little
physical sense it makes to ascribe temperature and pressure
(or the mean kinetic energy and momentum per particle) to
a single particle in a gas, as little sense would it make to
ascribe the statistically defined angle to a pair of
measurements that contributed to the very determination of
the angle. A fortiori, we can not draw firm conclusions
from an argument that hinges on a counterfactual set-up
controlled by the statistically defined angle. There is no
observational basis for assigning a value to such an angle,
because the value, as defined operationally in the above
way, is of statistical character and therefore not applicable
to any pair of orientations in any specific pair of
measurements, but only in the long run of many
measurement event pairs. In addition, the assignment of a
value of the angle, operationally defined as above, to pairs

of orientations that are not both effectuated, can only be
based on an arbitrary convention and therefore renders any
argument that is based on such angles unconvincing.

If the presented way of constructing a frame of reference
is so feeble that it does not allow us to assign values to
angles between counterfactual setups, why then should we
not stick with the conventional means using rods,
gyroscopes and so on? The reason is that our method is not
any more feeble than conventional means! Unless
conventional methods mysteriously gain strength
somewhere in the transition from the quantum to the
classical regime, any angle that can be measured by
conventional means can also be measured using a
sufficiently large ensemble of spin component observations
on an equally large number of pairs of spin ħ/2 particles, to
any desired accuracy. However, the proposed method,
which is obviously based on quantum phenomena, has the
additional advantage that it very clearly delineates the
domain of applicability of the method; a domain of
applicability that can not be surpassed by conventional
methods, unless the aforementioned mysterious powers
opened a back door for the conventional methods to do
measurements of angles that are out of reach for the
proposed method.

Whereas proofs like Bell's are hard pressed because of
the lack of an observational basis for the assumed frame of
reference, a realist point of view is not obstructed in the
same way. It is sensible to imagine a counterfactual set-up
of a measuring apparatus that is oriented towards a
particular colored mark and with a definite value of the
spin component in that direction, but we must keep in mind
that the whereabouts of the instrument's orientation relative
to other (factual or counterfactual) orientations is unknown.
Underlying Bell's and similar proofs is a concept of realism
that is far more encompassing than necessary. Things that
derive the status of being part of reality by force of real
observations, such as the angle between directions of
observation and even systems of coordinates in general, can
not be idealized to an existence detached from these
observations without introducing trouble in some corners of
our theoretical picture of the world.

II. MATHEMATICAL CONSTRAINTS ON HIDDEN
VARIABLE THEORIES OF SPIN ħ/2 PARTICLE

A. What makes an aspirant HV theory?
We have seen that the Bohm-Aharonov experiment has

just three relevant degrees of freedom: color of left mark,
color of right mark and the combination of the outcomes.
We will now discuss hidden variable theories that also
exhibit three degrees of freedom and hope to find one that
can be made to correspond to the Bohm-Aharonov
experiment and that explains the statistical correlations
found in the Bohm-Aharonov experiment (which are
assumed to be accurately predicted by quantum
mechanics).

The contemplated hidden variable theories all have one
aspect in common: not only the Stern-Gerlach magnets
have definite orientations, also the particle itself has one,
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which is the axis of rotational symmetry or "spin axis". The
three variables that specify any configuration of the three
directions are (a) the angle between the left measuring
apparatus and the spin axis, (b) the angle between the right
measuring apparatus and the spin axis and (c) the angle
between the left measuring apparatus and the right
measuring apparatus. None of these variables are precisely
measurable, but each corresponds to observed data: if the
left "up" detector is triggered, then the angle between the
left measuring apparatus and the spin axis is less than .
If the "down" detector is triggered, the angle is somewhere
between  and . Likewise for the right detector. The
angle between the measuring apparatuses is taken to be the
angle that was statistically derived from the outcomes of a
long series of Bohm-Aharonov measurements, using Eq.
(1b).

90°

90° 180°

The main point made by Bell was that no local hidden
variable theory is able to reproduce the predictions of
quantum mechanics. The requirement that our aspirant
hidden variable theories are local puts three constraints on
the statistical distribution of the angles between the
measuring apparatuses and between each measuring
apparatus and the particle's spin axis. These will be
discussed now.

Constraint 1.  The orientations of the measuring
instruments are unrelated.

Each measuring apparatus is oriented in a way that does
not depend on the orientation of the other instrument, not
even statistically. If the movements of the measuring
apparatuses A and B were restricted to a plane, then this
constraint would translate to a uniform distribution of
angles  in the range . We do, however,
assume that the instruments are freely orientable in space.
In that case, the probability that the angle between A and B
is  is proportional to .

∠AB 0 ≤ ∠AB ≤ π

∠AB sin ∠AB
Whereas the angle is non-uniformly distributed, its

cosine is not. So we require a uniform distribution
of the inner product  in the range

. The minus sign is arbitrarily introduced to
compensate for the circumstance that the particles' spins
are anti-parallel.

ρ (ZAB)
ZAB = -cos∠AB = −a.b

−1 ≤ ZAB ≤ 1

Normalization requires , so that ∫
1
−1 ρ (ZAB)dZAB = 1

ρ (ZAB) = ½ (2)

It is worthwhile to indicate which role the set-up plays. We
ask that during each measurement the measuring apparatus
points at a randomly chosen point of its own surroundings.
This does not automatically imply an isotropic distribution
of the orientations with respect to each other: one could
imagine that each observation post's orientations, taken
separately, would survive a "randomness test", but that the
orientations were not distributed isotropically with respect
to each other. That situation could arise if the observers
used the same sequence of random numbers to prepare the
instruments for each pair of measurements. We assume that
such correlation does not occur, because that seems to be
the only assumption that is compatible with the principles
of locality, causality and free will. 

Constraint 2. (Locality condition.) The orientation of one
magnet does not influence the result obtained with the
other.

Suppose that someone came up with a HV theory of a
spin ħ/2 particle. In order to test the claim that it
reproduces the predictions of QM in Bohm-Aharonov
experiments, we had to subject the theory to a Gedanken
experiment in which a great number of spin-component
measurements were randomly chosen. How would the
randomly chosen orientations of a measuring instrument be
distributed with respect to the particle's axis of rotational
symmetry? As we have no means of observing this
distribution, we postulate one. In the absence of any reason
to assume a non-isotropic distribution, we assume the
isotropic distribution. Call the inner product of the
orientation of the instrument and the direction of the
particle (denoted by unit vectors)  and  (for instrument
A and instrument B). Require that .

ZA ZB

ρ (ZA) = ρ (ZB) = ½
The sign of  determines the outcome of the

measurement made with the magnet at observation post A.
The locality condition says that  is independent of the
orientation of instrument B. The angle between the
instruments can be taken to represent this orientation, in
which case we locality condition translates to

ZA

ZA

ρ (ZA, ZAB) = ρ (ZA)ρ (ZAB) = 1 / 4. (3a)

Alternatively, we can take the (hidden) angle between
instrument B and the spin axis as representing the
orientation, so we also require that

ρ (ZA, ZB) = ρ (ZA)ρ (ZB) = 1 / 4. (3b)

As we are used to specify orientations with two mutually
independent angles, it is tempting to require that  is
independent of both of  and :

ZA

ZAB ZB

ρ (ZA, ZB, ZAB) = ρ (ZA)ρ (ZB)ρ (ZAB) = 1 / 8. (4)

However, below we will see that this conflicts with the next
constraint and even with the statistics of classical spinning
particles.

Constraint 3. The theory reproduces the predictions of
quantum mechanics

The correlation between the outcomes of measurements
on flown-apart particles with counter parallel spin axis
conforms exactly to the predictions of QM (see also Eq.
(1b)):

P (S) ≡ P (↑↑) + P (↓↓) = sin2 ∠AB

2

=
1 + ZAB

2
(5a)

P (N) ≡ P (↑↓) + P (↓↑) = cos2 ∠AB

2

=
1 − ZAB

2
. (5b)
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B. The joint distribution  that explains
the quantum mechanical predictions.

ρ(ZA, ZB, ZAB)

We assume that in a HV theory, a full specification of a
measurement of two spin components in the Bohm-
Aharonov experiment requires three angles, or there
cosines. We must now investigate whether there are
distributions  of these three quantities that
fulfill all three constraints. For example, the first constraint
requires that

ρ (ZA, ZB, ZAB)

ρ (ZAB) = ∫
1

−1 ∫
1

−1
ρ (ZA, ZB, ZAB)dZAdZB = 1 / 2, (6)

and second constraint, the locality condition, requires that

ρ (ZA, ZAB) = ∫
1

−1
ρ (ZA, ZB, ZAB)dZB = 1 / 4. (7)

Finally, according to quantum mechanics we must find that

P (↑↑) = ρ (ZAB)
−1
∫

1

0 ∫
1

0
ρ (ZA, ZB, ZAB)dZAdZB

=
1 + ZAB

4
. (8)

As it did not seem a trivial task to solve the set of equations
constituting the three constraints, a computer aided
approach was chosen. It was not difficult to find a
distribution that fulfills constraints 1 an 2, 

0.1
0.4

0.4

0.3
0.1

0.1 0.2

0.2
0.3

0.3 0.1

0.2
0.2

0.2 0.1

FIG. 1. Eight cells picked from  before
and after a transformation that redistributes probability
densities for triplets , while keeping each of

,  and  constant. .

ρ (ZA, ZB, ZAB)

(ZA, ZB, ZAB)
ρ (ZA) ρ (ZB) ρ (ZAB) �ρ = 0.1

Eq. (4) is such a distribution. Then, repeatedly applying an
algorithm that transforms the distribution to a new
distribution that also fulfills constraints 1 and 2,
distributions were found that fulfill the third constraint as
well. The algorithm is as follows: Choose two values for
each of  and . These values are the coordinates of
eight cells, the probability density of which we are going to
redistribute. Choose an amount  and add this amount to
four cells spanning a tetrahedron and subtract the same
amount from the remaining cells. By the right choice of
we can empty at least one of the eight cells. See Fig. 1.
Some of the results of this discrete approximation can be
seen in Figs. 2-4.

ZA, ZB ZAB

�ρ

�ρ

Z A =1

- 1

ZAB=1

Z B =1 - 1
↓ ↓

↑ ↑
↑ ↓

↓ ↑
Z A =1

- 1

ZAB=1

Z B =1 - 1
↓ ↓

↑ ↑
↑ ↓

↓ ↑

FIG. 2. Joint distribution of three mutual independent
inner products:  . The
size (volume) of each little cube is proportional to the
probability density of a given configuration of three -
values. As an example, one cell has been lifted out and its
size represents the probability that a configuration has
between 4/8 and 5/8,  between -4/8 and -3/8 and
between -3/8 and -2/8. (Stereogram)

ρ (ZA, ZB, ZAB) = ρ (ZA)ρ (ZB)ρ (ZAB)

Z

ZA

ZB ZAB

The distribution in Eq. (4) fully acknowledges the
freedom of the experimenters to vary the angle between the
instruments ( ) and it guarantees the isotropic
distribution of the axis of the model relative to the lines of
observation (  and ). Yet this distribution is not realistic
at all, because it does not restrict the angles between the
instruments ( ) and the angles between the
measurement instruments and the axis of the model (

 and ). These three angles can not be
completely independent: for example can the angle
between the measuring instruments not exceed the sum of
the angles between the instruments and the axis of the
model.

ZAB

ZA ZB

arccos−ZAB

arccos ZA arccos ZB

If two of the angles already are fixed to any values
between  and  (any two of , ,

, call them  and ), then we have the
following constraint on the third angle :

0 π {arccos ZAB arccos ZA

arccos ZB} α1 α2

α3

|α1 − α2| ≤ α3 ≤ α1 + α2. (9)
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Z A =1

- 1

ZAB=1

Z B =1 - 1
↓ ↓

↑ ↑
↑ ↓

Z A =1

- 1

ZAB=1

Z B =1 - 1
↓ ↓

↑ ↑
↑ ↓

↓ ↑ ↓ ↑

FIG. 3. Classical joint distribution . Only
configurations with
are realizable. The probability density is neither uniform
nor continuous everywhere. (Stereogram)

ρ (ZA, ZB, ZAB)
1 − Z2

A − Z2
B − Z2

AB + 2ZAZBZAB > 0

That means that whereas any two of the three angles are
independent of each other, there exists a mutual
dependency between the three angles.

The uniform distribution of three vectors  and  over
all directions illustrates this dependency. In an Euclidean
frame of reference, the joint density of the three inner
products
is

a, b c

s = ZA = a.c, t = ZB = b.c, u = ZAB = a.b

ρ (s, t, u) = (8π 1 + 2stu − s2 − t2 − u2)−1

(1 + 2stu − s2 − t2 − u2 > 0)

(10)

= 0 (1 + 2stu − s2 − t2 − u2 ≤ 0) .
Figure 3 illustrates the mutual dependency between the
three directions and the remarkable discontinuity of the
density at the border between possible and impossible
configurations, 

The next step is the fulfillment of constraint 3. Using the
transformation algorithm again, we eventually approach a
distribution that reproduces the predictions of quantum
mechanics (Eq. 5a/b). There are many distributions that
come very close, but they are all characterized by regions
of almost emptiness and steep climbs to high values of
probability density. The following distribution, which is the
limiting distribution as the number of subdivisions in the
discrete approximation goes to infinity, and which uses
Dirac delta functions, fulfills all three constraints (see Fig.
4 for a discrete approximation):

ρ (ZA, ZB, ZAB) = 1 / 8 [δ (ZA + ZB + ZAB + 1)

+ δ (ZA − ZB − ZAB + 1)

+ δ (ZA + ZB − ZAB − 1)

+ δ (ZA − ZB + ZAB − 1)] (11)

This distribution indicates that one continuous degree of
freedom is replaced by a discrete one: the density is only
non-zero on the surface of a tetrahedron spanned by four of
the eight corners of the configuration cube.

A classical configuration of three independent vectors is
specified by three numbers, which are the lengths of the
sides of a triangle on the unit sphere. They can not live
within less than the two dimensions of this sphere. On the
other hand, configurations that are compatible with QM
require only two numbers and a sign, the third number
being a function of either the sum or the difference of the
other two, depending on the sign.

Perhaps somewhat unexpectedly, our search for a
probability distribution for the angle between the
instruments and the angles between each instrument and
the (hidden) spin axis did not merely result in a non-
classical distribution, but also in a qualitative
characterization of any hidden variable theory with hopes
to fulfill all three constraints: the theory must endow a
model of a spin ħ/2 particle with a degeneracy that replaces
one continuous degree of freedom with a two-valued one.
We will now look at a theory that accomplishes this feat.

Z A =1

- 1

ZAB=1

Z B
- 1

↓ ↓

↑ ↑
↑ ↓

Z A =1

- 1

ZAB=1

Z B
- 1

↓ ↓

↑ ↑
↑ ↓

↓ ↑ ↓ ↑
=1 =1

FIG. 4. QM joint distribution . The
mutual dependency of the inner products  is
stronger than in the classical case. (Stereogram)

ρ (ZA, ZB, ZAB)
ZA, ZB, ZAB

III. EXAMPLE: A HIDDEN VARIABLE MODEL
BASED ON NON-FLAT SPACE-TIME

STRUCTURE

A. Overview
In the foregoing, a weakness in Bell's counterfactual

reasoning was exposed by peeling away unwarranted and
mostly silent assumptions that are underlying his proof,
until we were left with the nitty gritty observational data.
Then we postulated, in spite of Bell's conclusion, that the
direction of a particle's spin is really existing, although
hidden from observation. We found that the QM-
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compatible configurations of three vectors, denoting the
orientations of the measuring instruments and a candidate
model's hidden variable, seem to live within one dimension
less than classically expected.

The next step is the construction of a model with a
characteristic that we rightly can call the spin direction of
the model. We postulate that the stuff that the particle is
made of is space time itself, or more specifically, the
structure of space time. We will check that the full
specification of a geodetic path herein - tentatively
representing the world line of a measuring apparatus during
a measurement - exhibits the same lack of one degree of
freedom.

Such a postulated space-time structure is in part based on
guesswork, in part on esthetic rules, such as simplicity and
symmetry. The real structure of space time is perhaps
unknowable, but we may hit upon a theory of the structure
of space time that survives the observations that we
perform to test it.

The presented model tries only to explain a very limited
set of phenomena, namely the correlation between two spin
component measurements. We have not tried very hard to
incorporate and explain other phenomena. Thus, a simple
thing like the spatial distance between the spinning
particles is not expressed very well by the proposed model,
nor their relative movements. In fact, the model explains
two widely different phenomena without making a
distinction, which shows that in any case the differences
between these phenomena are not expressed in the model.
The first phenomenon is the correlation between the
measurements of spin components on two different
particles that together form a system in the singlet state.
The second phenomenon, that is explained equally well, is
the passage of a single spinning particle first through one,
then through a second Stern-Gerlach magnet at some
distance from the first, that is inclined with respect to the
first.

B. Metric and geodesic equations
Consider a metric gik

ds2 = cos2
ϑ dt2 − dr2 − r2dϑ2 − r2 sin2

ϑ dϕ2

+ 2r sin2
ϑ dϕdt. (12)

To get a feeling of how it would be like to be in a space
time with this metric, imagine an infinite set of concentric
spheres. Suppose that you momentarily were attached to
one of these spheres. You would have the feeling that this
sphere was rotating around the  axis with angular
velocity . In other words, you would feel
an acceleration away from the  axis. If you were to
move in the direction opposite to this intrinsic rotation with
angular velocity  the acceleration would disappear.
Although everywhere the experienced acceleration could
be explained as the effect of an angular velocity that
gradually decreased as , the spheres in this space time are
fixed to each other forever. It is the curvature of space-time
that gives the experience of being accelerated, just like the
curvature of space-time caused by the Earth's mass lets us

ϑ = 0
1
r = 1

radius of sphere

ϑ = 0

−1 / r

1
r

feel the force of gravitation: an acceleration without
movement, as opposed to the acceleration experienced in a
rocket.

The rotational effects in this space-time are due to the
last term in the metric ground form, . This
term specifies the model's spin direction relative to the
chosen frame of reference; by changing the sign of this
term or by rotating  along an axis perpendicular to the

 axis we obtain a model with opposite spin direction.

+2r sin2 ϑ dϕdϑ

180	

ϑ = 0
In order to investigate how free test-particles move in

this space-time we have to solve the equations of motion

d2xi

ds2
= −Γi

jk
dxj

ds

dxk

ds
. (13)

The non-zero coefficients of the affine connection ,
which are symmetric in the lower indices, are:

Γi
jk

Γt
tr = sin2 ϑ

2r Γt
rϕ = − sin2 ϑ

2

Γr
tϕ = sin2 ϑ

2 Γr
ϑϑ = − r

Γr
ϕϕ = − r sin2 ϑ Γϑ

tϕ = sin ϑ cos ϑ
r

Γϑ
rϑ = 1

r Γϑ
ϕϕ = − sin ϑ cosϑ

Γϑ
tt = − sin ϑ cos ϑ

r2 Γϕ
tr = − cos2 ϑ

2r2

Γϕ
rϕ = 1 + cos2 ϑ

2r .Γϕ
ϑϕ = cos ϑ

sin ϑ

(14)
With the shorthand notation ,

 etc. and the above connection  the
geodesic equations become

U r = r′ = dr
ds

U r′ = r′′ = d2r
ds2 Γi

jk

U t′ =
− U r sin ϑ [sin ϑ (U t − rUϕ)]

r
(15a)

U r′ =
(rUϑ)2 − (rUϕ sin ϑ) [sin ϑ (U t − rUϕ)]

r

(15b)

Uϑ′ =
− 2 U r (rUϑ) + cos ϑ

sin ϑ [sin ϑ (U t − rUϕ)]2

r2

(15c)

Uϕ′ =
1

r2 sin ϑ

×{−U r (rUϕ sin ϑ)

+ U r cos2ϑ [sin ϑ (U t − rUϕ)]

+ 2
cosϑ
sin ϑ

(rUϑ) [sin ϑ (U t − rUϕ)]} . (15d)

The geodesic equations have the following solutions:

U t = P +
X

r
(16a)

Uϕ =
P − X cotg2 ϑ

r

r
(16b)
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(Uϑ)2 =
A − X2

sin2 ϑ

r4
(16c)

(U r)2 = −
A − X2

r2
+

2PX

r
+ P2 − W , (16d)

where  and  are constants. We can also writeP, X, A W

P = cos2
ϑ U t + r sin2

ϑ Uϕ (17a)

X = r sin2
ϑ (U t − rUϕ) (17b)

A = (r2Uϑ)2 + [r sin ϑ (U t − rUϕ)]2
(17c)

W = (cosϑ U t)2 − (U r)2 − (rUϑ)2 − (r sin ϑ Uϕ)2

+ 2r sin2 ϑ U tUϕ (17d)

 is simply , the length of the vector  squared.
Time-like geodesics have , space-like geodesics
have  and light-like geodesics have . We
will restrict  to the values -1, 0 and 1. This restriction
removes an arbitrary scaling factor.

W gijU iU j U
W > 0

W < 0 W = 0
W

C. Comparison with paths in central force fields
If we only look at time-like geodesics in the direction

from past to future (the paths that test particles follow,
), then only three numbers  and  are

needed to fully specify a geodesic. What are the
consequences of this paucity of orbit-fixing numbers? Let
us compare a geodesic in a central gravitational field and a
geodesic in this model-space time. Four constants are
needed to specify the orbit of a freely falling test particle A
with respect to a massive body, such as the orbit of a planet
around a star. The shape of the orbit or eccentricity -
whether the orbit is a circle, an ellipse, a parabola or a
hyperbola - provides one number. The size of the orbit -
e.g. the distance of closest approach to the central massive
body - provides another number. The orientation of the
orbital plane, defined as the unit vector normal to the
orbital plane, requires the specification of two angular
coordinates. That adds two more degrees of freedom and
brings the total number of constants to four.

W = 1, U t > 0 P, X A

For the time-like geodesics in our model-space-time the
situation is different. If we assume that two numbers are
needed to specify "shape" and "size", then only one number
is left to specify the "orbital plane". The quotes indicate
that we cannot be sure that it makes sense to talk about
shape, size and orbital plane. We will later have to look at
that.

If one number fixes an orbital plane then obviously the
orbital orientation has only one degree of freedom. Given
one orbital plane, then another orbital plane can be
specified with reference to the given orbital plane by
providing the difference of the "orbital plane numbers". In
fact, there is an ambivalence in such a specification
because of the sign of the difference. This sign can not be
specified without breaking the symmetry between the two
planes: we have to assume that either plane can play the
role of reference plane and the expressions should not
depend on this choice in any arbitrary way. 

We have seen the same "directional degeneracy" before:
the distribution of values  that reproduces
quantum mechanics is such that given one -value, the
other -values can be specified with reference to this single

-value. For example, if  is given then  is specified, up
to a bivalent choice, by giving just one more number:
(see 7a-d).

ZA, ZB, ZAB

Z
Z

Z ZA ZB

ZAB

D. How the constants define shape and orientation of
the geodesic

We will now look more closely at the constants of the
motion and see whether it really is the case that there is
only one number to specify the orbital plane.

 and  are real numbers that only to some degree
can be chosen freely. The expression for  indicates
that only values  can lead to geodesics. It also
shows that such geodesics are restricted to points where

. Geodesics with values of  close to  are

close to the equatorial plane , while a value of
close to zero allows the geodesic to approach the poles very
closely. Therefore we define

A, P, X W
(Uϑ)2

|X| ≤ A

sin ϑ ≥ |X|
A

|X| A

ϑ = π
2

|X|
A

S =
X

A
(−1 ≤ S ≤ 1)

″tilt of orbital plane″. (18)

If  or  then ; such geodesics are
equatorial. All other geodesics are wavering north and
south (and through) the equatorial plane and their orbital
plane, if such a mathematical object can be defined, is tilted
with respect to the equatorial plane. The maximum angular
distance from the equatorial plane is reached when

, which is when . We call  the "tilt of
the orbital plane with respect to the equatorial plane", in
analogy to the tilt of a planetary orbit with respect to the
Sun's equatorial plane, which also is equal to the angle
where the planet reaches its greatest angular distance from
the equatorial plane. While we already have seen that the
tilt of a planetary orbit is only one of two constants that
define the orientation of the orbital plane, we still have to
see whether there is such a second constant in the case of
our model-space-time geodesics.

S = −1 S = 1 sin ϑ = 1

|Uϑ| = 0 sin ϑ = |S| S

We can learn much about the orbital shape and size from
investigating the radial velocity. If  then  is a
second order function of  and otherwise it is a first
order function of . The coefficient of the -term is
zero or negative, because . From that follows that

 has a maximum if . If the equation
has no solutions, then this maximum is negative, which is
forbidden,  being the square of a real number and
therefore necessarily non-negative. We can investigate the
constraints on  and  that ensure that

A ≠ X2 (U r)2

1 / r
1 / r 1 / r2

A ≥ X2

(U r)2 A ≠ X2 (U r)2 = 0

(U r)2

P, X, W A

(U r)2 = −
A − X2

r2
+

2PX

r
+ P2 − W = 0 (19)

has solutions.
The solutions of  are:1 / r
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1
r |Ur = 0

=
PX ± AP2 − AW + X2W

A − X2
. (20)

The condition that there be solutions is that

P2 ≥ W (1 −
X2

A ) . (21)

The factor in parentheses is non-negative, because .
If , then the relation is fulfilled for all values of .
For positive  the above relation puts a lower bound on
the absolute value of .

A ≥ X2

W ≤ 0 P
W

P
Because the radial parameter  is non-negative, we are

only interested in non-negative solutions of . If there is
one positive solution, then the trajectory is unbound: the
positive solution is the point of closest approach, but there
is no point of greatest radial distance. If the other solution
is zero, then the trajectory is just barely unbound and has
the status of a parabolic trajectory in a central force field. If
the other solution is negative, the trajectory is "hyperbolic".
If there are two positive solutions, the trajectory is bound,
like the elliptic trajectories in a central field with a
potential. If the two positive solutions are equal, the
trajectory has constant radius, i.e. it is comparable with
circular orbits. 

r
1 / r

1 / r

The close analogy between classical orbits in central
force fields and geodesics in our space-time model is
concisely expressed by 

P2 − W

2
=

(U r)2 + (U⊥)2

2
−

XP

r
−

X2

2r2
, (22a)

where

(U⊥)2 = (rUϑ)2 + sin2
ϑ (U t − rUϕ)2

″square of tangential velocity″. (22b)

Eq. (22a) unmistakably has the signature of an energy,
having a kinetic part depending on the squares of the radial
and tangential velocities and two potential parts, one of
which is due to a long range  potential that can be
attractive or repelling, like a Coulomb potential, while the
other is due to a short range attractive  potential. The

 potential gives rise to orbits having circular, elliptic,
parabolic or hyperbolic shapes, while the  potential
adds a precession of pericentrum to the movement, like the
shift of the perihelion of Mercury that also is caused by a

 term.

1 / r

1 / r2

1 / r
1 / r2

1 / r2

The energy expression [Eq. (22a)] contains two
independent constants  and  that together define shape
and size of an orbit in the same way that shape and size of
planetary orbits are defined by the mass of the sun and the
energy per kilogram of planetary mass, where  plays the
role of the solar mass and  the role of energy
per unit of planetary mass.

P X

X
(P2 − W) / 2

Now we have "used" three constants to specify the tilt of
the orbital plane [Eq. (18)], the size of the orbit [Eq. (20)]
and the shape of the orbit [Eq. (22a)] and there is no
constant to completely specify the orientation of the orbital
plane. This situation is explained by the fact that the orbital
plane has to rotate to ensure that a geodesic test particle
does not leave the orbital plane. The pace  with
which the intersection line  of

Ω = dψ
dt

{ϑ = π / 2, ϕ = ψ (t)}

orbital plane and the equatorial plane rotates depends on
the instantaneous radial distance  of the test particle:r

Ω = 1 / r. (23)

The movement of the test particle for the case where the
orbit has constant  ("circular" orbit) is accurately modeled
by the movement of a point on the rim of a coin that is set
to spin on its side on a table. The coin may start almost
upright, slowly falling due to frictional dissipation and
decreasing its tilt with respect to the surface of the table
until it lies down flat on the table. In the model space-time,
of course, there is no friction and the initial tilt remains the
same forever. While the coin is wobbling on the table, it
rolls on its surface, which means that points on the rim not
only take part in the rotation of the plane of the coin, but
also in a rotation around the axis that is perpendicular to the
coin, moving up and down and around in a complex dance.

r

The movement becomes even more complex if the radial
distance is not constant, but it can still be understood easily
if one imagines that the movement takes place in a tilted
orbital plane that rotates. Figures 5-6 give depict a geodesic
from these two perspectives.

FIG. 5. Plot of a geodesic in global coordinate system.
, , , . (Stereogram)W = 1 X = 7.6 P = 0.94 A = 361.0

FIG. 6. The same geodesic as in Fig. 5., but now
projected on the co-rotating tilted orbital plane.
(Stereogram)

E. Spin component measurements
In a Stern-Gerlach experiment the direction in which a

spinning particle is deflected depends on the direction of
the force

Fz = −∇ (−μ.B) = μz
∂Bz

∂ z
, (24)

where  is the magnetic moment of the particle associated
with the spin of the particle and  is the magnetic field of
the magnet, having a strong gradient . As seen from

μ
B

∂Bz / ∂ z

Space-Time Structure as Hidden Variable 5/10/00 page 9 of 10



the particle's point of view, depending on the force, the
pole where the magnetic field is strongest is either pushed
away or attracted by the particle as it passes through the
gap between the poles. This effect is similar to the force
exerted on a geodesic test particle in the model space-time.
If we look at Eq. (22a) we can see that the  potential
gives rise to either an attractive force or a repelling force,
depending on the sign of . This close analogy is the
reason why we can say that the sign of  corresponds to the
outcome of a spin component measurement.

1 / r

X
X

IV. CONCLUSION

If we accept that we can not know for sure whether
space-time is flat at the scale (in space and time) at which
the Bohm-Aharonov experiment is performed, then we can
not evade the conclusion that Bell's and similar proofs,
which are all based on counterfactual statements, do not
apply. Non-local angles and other geometric relations over
some distance involving counterfactual set-ups are not
measurable and have, even from a realist point of view, no
definite values, because non-local geometric relations in
curved space-time require operational definitions, which
are of course not applicable to counterfactual set-ups.

A proper description of the EPR and Bohm-Aharonov
experiments amalgamates the indefiniteness of the
traditional quantum description with the realist point of
view of the traditional classical description. Such a
description is in the spirit of general relativity and makes

plausible that, contrary to common opinion, the
philosophical foundation of general relativity is also
fundamental to the proper interpretation of quantum
mechanics as a statistical theory in a non-flat and largely
unknown playground.

An analysis of the results of the Bohm-Aharonov
experiment (which are assumed to agree with the
predictions of quantum mechanics) indicates that a hidden
variable can be introduced to explain the results, but that
the configuration of three directions (the orientations of the
measuring instruments and the direction of the hidden
variable) has one degree of freedom less than expected
classically. Classically, given two of the three angles that
identify a configuration, the third angle can be chosen
freely from a continuous spectrum. On the other hand,
configurations that are compatible with the predictions of
QM restrict the third angle to a bivalent choice. This
restriction is not severe and does not introduce non-locality
by itself: even classically the third angle is restricted.

A model based on the simple, even naive assumption that
spin has to do with space time structure with rotational
symmetry in one direction, exhibits geodesic movements
with fewer orbit defining constants than are needed for a
Keplerian orbit of a test particle in a central force field. Of
the three constants, only one constant defines the
orientation of the orbital plane. Relative to an orbital plane,
any other orbital plane can, up to a bivalent choice, be
specified with a single number. Thus the model has exactly
the required property to ensure that the predictions of
quantum mechanics can be reproduced. 
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