Ontology-based question answering with feature structures

Patrizia Paggio, Dorte Halstrup Hansen and Lene Offersgaard
Centre for Language Technology
University of Copenhagen
{patrizia|dorte|loff}@cst.dk

April 24, 2006

This paper describes the Danish grammar resources developed within the European project MOSES (Modular and Scalable Environment for the Semantic Web). In particular we discuss the way in which the Danish feature structure grammar developed previously by means of the LKB platform has been adapted to work in the MOSES application, and how the PET parser used to run the grammar is integrated in the MOSES architecture. We claim that feature structures are an adequate means of expressing the necessary relations between linguistic and domain knowledge.

The objective of MOSES was to develop an ontology-based methodology to create, maintain and search semantically structured Web contents in a federation of sites (Atzeni et al, 2004) (Paggio et al. 2004). The test bed was an agent-based knowledge management system and an ontology-based search engine for the Web sites of the two European universities of Roma Tre and Copenhagen. Natural language interfaces have been developed for Danish and Italian. Although MOSES can be seen as a question answering (QA) application from the point of view of the interaction with the user, it differs from classical QA systems because it is ontology-based and relies on the topic maps formalism for the representation of Web contents. This means that natural language processing, instead of targeting texts as is customary in QA, must interface to the topic maps knowledge structure both in question analysis and answer generator.

Question analysis is carried out in the MOSES linguistic module associated with each language. Although MOSES poses no constraints on the format of the output of each linguistic module, its building blocks must be the classes, instances and relations of the corresponding ontology. The output is then transformed into an XML query understandable to the knowledge base. The Danish module consists of a pre-processor responsible for tokenisation, PoS tagging, lemmatisation and named entity recognition, and a parser. The parser is an adapted version of PET (Callmeier 2000), which produces for each input question a set of typed feature structures corresponding to the semantic analysis of
the question. In other words, although syntactic and semantic analysis are con- 
flated in the grammar as is customary for constraint-based grammars inspired to 
the HPSG paradigm, only the semantic information is retained in the output.

For instance, the analysis of the question “Hvem underviser i databaser?” (Who teaches databases?) is as shown in Figure (1). At the highest level, the FOCUS attribute refers to the semantic class the knowledge structure is to be queried for, while the value of COUNT indicates that we are interested in all the topics belonging to this class, and LOA (list of associations) contains a list of relevant semantic relations, in this case courseOffer and studySubject, that further constrain the topics in question. Each relation is in turn a feature structure and has a number of attributes corresponding to semantic roles. The value of a semantic role is a domain class. The terms topic and association come from the topic maps knowledge structure which the linguistic analysis interfaces to. The entire set of semantic types (about 200 classes and 50 relations) that are part of the ontology is shared between the linguistic analysis module and the query execution module.

Typed feature structures have proved an adequate formalism to define the domain ontology as part of the underlying type hierarchy, and also to express the necessary relations between lexical and syntactic features on the one hand, and domain content on the other. These relations are defined in the individual lexical entries. For example, a simplified entry for the verb undervise (teach) looks as shown in Figure (2): token identity is enforced between the TEACHER and SUBJECT roles and the syntactic arguments of the verb.

The grammar has been tested on a list of 85 questions of varying syntactic complexity spanning a wide range of semantic relations. Of these, 65 were...
analysed correctly, 3 produced an incorrect analysis, and 17 failed to produce an analysis. These results make it clear that although the grammar is able to produce correct semantic representations in a number of non-trivial cases, more robustness should be added to produce at least partial analyses for the cases that fall outside of the implemented coverage.