Long distance dependencies and basic clause structure in Norwegian

Petter Haugereid
Norwegian University of Science and Technology
Dragvoll, N-7491 Trondheim
petterha@hf.ntnu.no.

Abstract
This paper presents an HPSG approach to long distance dependencies in Norwegian, where the extraction site is assumed to dominate the extracted item. The approach involves a radically new analysis of basic main clause and subordinate clause structures. The analysis is extended to Irish, where complementizers register the extraction path.

1 Introduction
In frameworks like GPSG (Gazdar et al., 1985, 137-168), HPSG (Pollard and Sag, 1994, 157-207 and 376-388) and (Sag et al., 2003, 427-452), LFG (Bresnan, 2001, 180-208) and CCG (Steedman, 2000), the extracted item of a long distance dependency is assumed to be filled in at the top of the tree. The way an element is extracted, varies from framework to framework.

In the HPSG literature there are two main approaches to long distance dependencies, pointed out by Levine (2003). In one approach, the trace approach (Pollard and Sag, 1994, 157-207), it is assumed that an empty category is taken as an argument and introduces an element on the \textsc{slash} list that is transferred up the tree until it is filled in by the head filler rule. In a more recent approach, the lexical approach (Bouma et al., 2001), it is assumed that a lexical head gathers the slashes from its arguments and adjuncts by means of relational constraints. Then the \textsc{slash} value is transferred up the tree until the head filler rule fills it in.

In the approach I am suggesting in this paper, the extraction site is assumed to dominate the filler rule. I am going to show how this single assumption gives a natural account of the registering of the extraction path in languages like Irish.

2 The new approach
Long distance dependencies are accounted for by means of three operations. This is illustrated in Figure 1. First, there is a filler rule at the bottom of the tree (the VP/NP node\(^1\)). Second, the \textsc{slash} list is copied up the tree. This is done by unifying the \textsc{slash} value of the first daughter with that of the mother. Third, the filled in element is extracted. This is done by means of a unary extraction rule (node VP2).

2.1 The filler rule
The filler rule is given in Figure 2.\(^2\) Here it is illustrated how the element on the \textsc{slash} list of the mother is unified with the \textsc{local} value of the first daughter (see tag \([2]\)). The \textsc{slash} list of the head daughter is empty.

2.2 The extraction rule
The extraction rule for argument 2 is given in Figure 3. Here, the \textsc{local} value of \textsc{arg}2 (tag \([2]\)) is unified with the \textsc{slash} element of the daughter. The \textsc{slash} list of the mother is empty. The fact that argument 2 is extracted by this rule is marked by switching the \textsc{link} value from \textsc{arg}2+ in the daughter to \textsc{arg}2− in the mother. The grammar

\(^1\)The label VP is used for phrases with head value \texttt{verb}. The number on a node indicate that the rule is a valence rule, and also what kind of argument that was realized. The numbers correspond in general to the roles found in the initial stratum in Relational Grammar (Blake, 1990). Instead of assuming valence features such as \textsc{spr} and \textsc{comps}, the valence features \textsc{arg}1, \textsc{arg}2, \textsc{arg}3 and \textsc{arg}4 are employed (Søgaard and Haugereid, 2005, 196-197).

\(^2\)The feature \textsc{synsem} is left out in order to make the figures as small as possible.
Figure 2: Head-filler rule

has one extraction rule for each kind of argument (five in all), and one for adjuncts.

Figure 3: Arg2 extraction rule

It is assumed in this approach that also subjects are extracted. This is illustrated in Figure 4, where the rule VP1 extracts the subject han (‘he’). The head filler rule (VP/NP) is the daughter of the extraction rule.

2.3 Floating quantifiers

One reason for extracting the subject is that this makes it possible to account for so-called “floating quantifiers” (Sporich, 1988) in Norwegian. The assumption is that floating quantifiers appear where the extraction has taken place. The floating quantifier of a subject in a Norwegian main clause appears after the finite verb, as the data in (1) indicate.3 In (1a) alle (‘all’) appears between the finite verb and the direct object (the position for the subject in a yes-no question). In (1b) alle is positioned before the finite verb, and the sentence is ungrammatical. In (1c) alle is positioned after the direct object, and the sentence is ungrammatical.

(1) a. Barna leser alle en bok.
children-def read all a book
The children all read a book.

b. *Barna alle leser en bok.
children-def all read a book

c. *Barna leser en bok alle.
children-def read a book all

The data in (2) show that the floating quantifier of the object, begge (‘both’), appears in the “canonical” position after the subject (see 2a). If begge is attached to the extracted object ((2b)) or comes in the position after the finite verb ((2c)), the sentence is ungrammatical.

(2) a. Bøkene leser jeg begge på to timer.
books-def read I both on two hours
The books I read both in two hours.

b. *Bøkene begge leser jeg på to
books-def both read I on two

hours

c. *Bøkene leser begge jeg på to
books-def both read I on two

hours

Given the analysis where the subject is assumed to be extracted, it is possible to assume a rule that extracts the subject and at the same time realizes the “floating quantifier,” as illustrated in Figure 5. Here the rule labeled VP enters an element in the slash list of the daughter, and realizes the “floating quantifier” alle.

2.4 The merge rule

Verbs that are not heading the projection are accounted for by means of a rule called merge-rule.

3Faarlund et al. (1997, 920–922) has more examples of floating quantifiers of subjects in Norwegian. Exceptional cases occur in connection to light (or weak) pronouns, like in (i) (so-called “Object Shift”). The floating quantifier here occurs in the position after the object ((iia)), instead of before the object ((iib)).

(i) a. Barna leser den alle.
children-def read it-LIGHT all
The children all read it.

b. *Barna leser alle den.
children-def read all it-LIGHT
This rule will attach the main verb to the projection in cases where an auxiliary or a complementizer heads the projection. This is illustrated in Figure 6, where the auxiliary har ('has') heads the projection, and the main verb lest ('read') merges with the auxiliary projection in the node AUXP.

The *merge rule* is given in Figure 7. The illustration shows that the first daughter is the head daughter (see tag ①). The valence values of the two daughters are unified with that of the mother (tag ②). The MERGE value of the first daughter is unified with the second daughter (see tag ④), and the MERGE value of the second daughter is unified with the MERGE value of the mother (tag ③).

2.5 Subordinate clauses

Subordinate clauses are accounted for by means of a particular construction, the binary complementizer rule. This construction takes as its first daughter a projection that can take a subordinate clause as its second argument. The second

4The illustration of how valence information is merged is simplified in this presentation. In a grammar implementation of this analysis, I am using two valence features in order to give a constructional account of passive. But as long as passive is not involved, the values of VAL will always be unified, so this is not relevant for presentation given here.
expected PP attachments, as the trees in Figure 11 and 12 show. In Figure 11, the PP attaches inside the subordinate clause, while in Figure 12, the PP attaches at main clause level.

3 Registering of extraction path

One argument for letting the extraction site dominate the filler rule is data from languages where the extraction path is registered by verbs or complementizers. The Irish data in (3) (originally from McCloskey (1979)) are used by Hulári and Levine (1995) and Sag (2005) among others to illustrate this fact. In Irish, the choice of complementizer reflects whether the complementizer intervenes between an extraction site and the filler or not. The complementizer goN is not on the extraction path, while the complementizer aL is on the extraction path. In (3a) there is no extraction taking place, so the complementizer goN is used. In (3b) there are two complementizers on the extraction path. Both of them aL. And in (3c) there are three complementizers, all of them aL, on the extraction path. (3d) is an example of an NP with two complementizers, but where only one is on the extraction path. The complementizer on the extraction path is aL and the one occurring after the extraction site is goN. (3e) has three complementizers. Two on the extraction path (both aL), and one after the extraction site (goN).

The element that is extracted does not have to be a complement. It can also be an adjunct.

(3) a. Dúirt mé gurL shil mé goN
 said I goN.PAST thought I COMP
Figure 12: Analysis of Jon hevdet at han sov i flere timer (‘John claimed that he had slept for several hours’). PP attachment to main clause.

mbéadh sé ann.
would-be he there

‘I said that I thought that he would be there.’

b. an fear aL shil mé aL
 the man COMP thought I COMP
 bheidh ann
 would-be there

‘the man that I thought would be there’

c. an fear aL dúirt mé aL
 the man COMP said I COMP
 shil mé aL bheidh ann
 thought I COMP would-be there

‘the man that I said I thought would be there’

d. an fear aL shil goN
 [the man], COMP thought goN
 mbeadh sé ann
 would-be he there

‘[the man], that thought he would be there’

e. an fear aL dúirt sé aL
 the man COMP said he COMP
 shil goN mbeadh sé ann
 thought goN would-be he there

‘the man that he said thought he would be there’

In an approach where the extraction site dominates the filler, this kind of data can be accounted for, since the mother of the complementizer can tell whether the complementizer is on the extraction path or not. So the complementizer only has to “agree” with its mother. In all the other ap-

proaches, where the filler is on the top of the tree, there is no straightforward account of the extraction path facts. In the trace account of Pollard and Sag (1994) the non-empty slash value is only accessible above the extraction site.

Especially adjunct extraction is difficult, since adjuncts normally do not appear in the subcat frame of the verb. Bouma et al. (2001) suggest to collect all the dependents of a verb (arguments and adjuncts) on a DEPS list, and then, by means of relational constraints, letting the dependent that is extracted appear on the slash list of the verb. The slash then follows the head to the top of the tree, where it is filled in. Sag (2005) uses a lexical rule to achieve the same. In the approach suggested in this paper, no extra machinery is needed as long as one assumption holds, namely that the extraction site dominates the filler.

The tree in Figure 13 shows how the NP in (3e) can be analyzed. Note that the mothers of the two aL-complementizers have a non-empty slash list, while the mother of the GoN-complementizer has an empty slash list.

Figure 13: Analysis of (3e)

References

